3 resultados para INFILTROMETERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little attention has been paid to the possibility that soil water repellency could enhance non-equilibrium water flow and solute transport through macropores present in structured clay soils. In this study, we measured infiltration and solute transport in a clay soil under near-saturated conditions in both the field using tension infiltrometers and in the laboratory on undisturbed soil columns. Measurements were made on adjacent plots under grass and continuous arable cultivation. Steady-state field infiltration rates measured using water and ethanol as the infiltrating fluids demonstrated that the soil macroporosity under grass was better developed, but that much of the structural pore system was inactive due to water repellency. No water repellency was detected on the arable plot disturbed by tillage. Dye tracing showed that the conducting macroporosity was largely comprised of earthworm channels in the grassed plot and inter-aggregate voids resulting from ploughing in the arable plot. Tracer breakthrough curves measured on field-dry soil indicated rapid macropore transport in columns taken from both plots, although the degree of non-equilibrium transport appeared somewhat stronger under grass. This result, which was attributed to water repellency, was also consistent with the larger flow-weighted mean pore size found in the field infiltration experiments. It is concluded that water repellency in undisturbed structured clay soils can have significant effects on the occurrence of non-equilibrium water and solute transport in macropores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Warrick and Hussen developed in the nineties of the last century a method to scale Richards' equation (RE) for similar soils. In this paper, new scaled solutions are added to the method of Warrick and Hussen considering a wider range of soils regardless of their dissimilarity. Gardner-Kozeny hydraulic functions are adopted instead of Brooks-Corey functions used originally by Warrick and Hussen. These functions allow to reduce the dependence of the scaled RE on the soil properties. To evaluate the proposed method (PM), the scaled RE was solved numerically using a finite difference method with a fully implicit scheme. Three cases were considered: constant-head infiltration, constant-flux infiltration, and drainage of an initially uniform wet soil. The results for five texturally different soils ranging from sand to clay (adopted from the literature) showed that the scaled solutions were invariant to a satisfactory degree. However, slight deviations were observed mainly for the sandy soil. Moreover, the scaled solutions deviated when the soil profile was initially wet in the infiltration case or when deeply wet in the drainage condition. Based on the PM, a Philip-type model was also developed to approximate RE solutions for the constant-head infiltration. The model showed a good agreement with the scaled RE for the same range of soils and conditions, however only for Gardner-Kozeny soils. Such a procedure reduces numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scaling methods allow a single solution to Richards' equation (RE) to suffice for numerous specific cases of water flow in unsaturated soils. During the past half-century, many such methods were developed for similar soils. In this paper, a new method is proposed for scaling RE for a wide range of dissimilar soils. Exponential-power (EP) functions are used to reduce the dependence of the scaled RE on the soil hydraulic properties. To evaluate the proposed method, the scaled RE was solved numerically considering two test cases: infiltration into relatively dry soils having initially uniform water content distributions, and gravity-dominant drainage occurring from initially wet soil profiles. Although the results for four texturally different soils ranging from sand to heavy clay (adopted from the UNSODA database) showed that the scaled solution were invariant for a wide range of flow conditions, slight deviations were observed when the soil profile was initially wet in the infiltration case or deeply wet in the drainage case. The invariance of the scaled RE makes it possible to generalize a single solution of RE to many dissimilar soils and conditions. Such a procedure reduces the numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils.