950 resultados para IMNV Brazil. Polymorphic sites. Variable region. Conserved domains. Protein modeling. RNA
Resumo:
Shrimp farming is one of the activities that contribute most to the growth of global aquaculture. However, this business has undergone significant economic losses due to the onset of viral diseases such as Infectious Myonecrosis (IMN). The IMN is already widespread throughout Northeastern Brazil and affects other countries such as Indonesia, Thailand and China. The main symptom of disease is myonecrosis, which consists of necrosis of striated muscles of the abdomen and cephalothorax of shrimp. The IMN is caused by infectious myonecrosis virus (IMNV), a non-enveloped virus which has protrusions along its capsid. The viral genome consists of a single molecule of double-stranded RNA and has two Open Reading Frames (ORFs). The ORF1 encodes the major capsid protein (MCP) and a potential RNA binding protein (RBP). ORF2 encodes a probable RNA-dependent RNA polymerase (RdRp) and classifies IMNV in Totiviridae family. Thus, the objective of this research was study the IMNV complete genome and encoded proteins in order to develop a system differentiate virus isolates based on polymorphisms presence. The phylogenetic relationship among some totivirus was investigated and showed a new group to IMNV within Totiviridae family. Two new genomes were sequenced, analyzed and compared to two other genomes already deposited in GenBank. The new genomes were more similar to each other than those already described. Conserved and variable regions of the genome were identified through similarity graphs and alignments using the four IMNV sequences. This analyze allowed mapping of polymorphic sites and revealed that the most variable region of the genome is in the first half of ORF1, which coincides with the regions that possibly encode the viral protrusion, while the most stable regions of the genome were found in conserved domains of proteins that interact with RNA. Moreover, secondary structures were predicted for all proteins using various softwares and protein structural models were calculated using threading and ab initio modeling approaches. From these analyses was possible to observe that the IMNV proteins have motifs and shapes similar to proteins of other totiviruses and new possible protein functions have been proposed. The genome and proteins study was essential for development of a PCR-based detection system able to discriminate the four IMNV isolates based on the presence of polymorphic sites
Resumo:
Shrimp farming is one of the activities that contribute most to the growth of global aquaculture. However, this business has undergone significant economic losses due to the onset of viral diseases such as Infectious Myonecrosis (IMN). The IMN is already widespread throughout Northeastern Brazil and affects other countries such as Indonesia, Thailand and China. The main symptom of disease is myonecrosis, which consists of necrosis of striated muscles of the abdomen and cephalothorax of shrimp. The IMN is caused by infectious myonecrosis virus (IMNV), a non-enveloped virus which has protrusions along its capsid. The viral genome consists of a single molecule of double-stranded RNA and has two Open Reading Frames (ORFs). The ORF1 encodes the major capsid protein (MCP) and a potential RNA binding protein (RBP). ORF2 encodes a probable RNA-dependent RNA polymerase (RdRp) and classifies IMNV in Totiviridae family. Thus, the objective of this research was study the IMNV complete genome and encoded proteins in order to develop a system differentiate virus isolates based on polymorphisms presence. The phylogenetic relationship among some totivirus was investigated and showed a new group to IMNV within Totiviridae family. Two new genomes were sequenced, analyzed and compared to two other genomes already deposited in GenBank. The new genomes were more similar to each other than those already described. Conserved and variable regions of the genome were identified through similarity graphs and alignments using the four IMNV sequences. This analyze allowed mapping of polymorphic sites and revealed that the most variable region of the genome is in the first half of ORF1, which coincides with the regions that possibly encode the viral protrusion, while the most stable regions of the genome were found in conserved domains of proteins that interact with RNA. Moreover, secondary structures were predicted for all proteins using various softwares and protein structural models were calculated using threading and ab initio modeling approaches. From these analyses was possible to observe that the IMNV proteins have motifs and shapes similar to proteins of other totiviruses and new possible protein functions have been proposed. The genome and proteins study was essential for development of a PCR-based detection system able to discriminate the four IMNV isolates based on the presence of polymorphic sites
Resumo:
The Brazilian population represents an admixture of native Amerindians, Portuguese settlers and Africans who were brought as slaves during the colonization period that began in the 16th century and was followed by waves of immigrations of Europeans and Asians in the 20th century. The contribution of these different ethnic groups to the constitution of Brazilian populations from different geographic regions is variable and, in addition to environmental factors, might act by determining different allele profiles among Brazilian populations from different regions. We studied polymorphic sites at the 3' untranslated region of the HLA-G gene in individuals from a Northeastern Brazilian region and compared them to our previously published data about a Southeastern Brazilian region, located at a distance of 2589 km. Our results showed that most polymorphic sites present a similar distribution in both populations, except for the lower frequency of the +3003C allele in the Northeastern population compared to the Southeastern population. Although differences in genotypic distribution were only significant for the +3003 locus (P = 0.0201), the diversity of haplotypes was distinct for each population. These results are important for casecontrol studies on the association of human leucocyte antigen-G polymorphism with disease and also in terms of the genetic structure of two distinct Brazilian populations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The variable immunoglobulin (Ig) domains contain hypervariable regions that are involved in the formation of the antigen binding site. Besides the canonical antigen binding site, so-called unconventional sites also reside in the variable region that bind bacterial and viral proteins. Docking to these unconventional sites does not typically interfere with antigen binding, which suggests that these sites may be a part of the biological functions of Igs. Herein, a novel unconventional binding site is described. The site is detected with 8-azidopurine nucleotide photoaffinity probes that label antibodies efficiently and under mild conditions. Tryptic peptides were isolated from photolabeled monoclonal antibodies and aligned with the variable antibody domains of heavy and light chains. The structure of a variable Ig fragment was used to model the binding of the purine nucleotide to invariant residues in a hydrophobic pocket of the Ig molecule at a location distant from the antigen binding site. Monoclonal and polyclonal antibodies were biotinylated with the photoaffinity linker and used in fluorescence-activated cell sorter and ELISA analyses. The data support the utility of this site for tethering diagnostic and therapeutic agents to the variable Ig fragment region without impairing the structural and functional integrity of antibodies.
Resumo:
The microtubule-associated protein, MAP65, is a member of a family of divergent microtubule-associated proteins from different organisms generally involved in maintaining the integrity of the central spindle in mitosis. The dicotyledon Arabidopsis thaliana and the monocotyledon rice (Oryza sativa) genomes contain 9 and 11 MAP65 genes, respectively. In this work, we show that the majority of these proteins fall into five phylogenetic clades, with the greatest variation between clades being in the C-terminal random coil domain. At least one Arabidopsis and one rice isotype is within each clade, indicating a functional specification for the C terminus. In At MAP65-1, the C-terminal domain is a microtubule binding region (MTB2) harboring the phosphorylation sites that control its activity. The At MAP65 isotypes show differential localization to microtubule arrays and promote microtubule polymerization with variable efficiency in a MTB2-dependent manner. In vivo studies demonstrate that the dynamics of the association and dissociation of different MAP65 isotypes with microtubules can vary up to 10-fold and that this correlates with their ability to promote microtubule polymerization. Our data demonstrate that the C-terminal variable region, MTB2, determines the dynamic properties of individual isotypes and suggest that slower turnover is conditional for more efficient microtubule polymerization.
Resumo:
To determine whether T-cell-receptor (TCR) usage by T cells recognizing a defined human tumor antigen in the context of the same HLA molecule is conserved, we analyzed the TCR diversity of autologous HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones derived from five patients with metastatic melanoma and specific for the common melanoma antigen Melan-A/MART-1. These clones were first identified among HLA-A2-restricted anti-melanoma CTL clones by their ability to specifically release tumor necrosis factor in response to HLA-A2.1+ COS-7 cells expressing this tumor antigen. A PCR with variable (V)-region gene subfamily-specific primers was performed on cDNA from each clone followed by DNA sequencing. TCRAV2S1 was the predominant alpha-chain V region, being transcribed in 6 out of 9 Melan-A/MART-1-specific CTL clones obtained from the five patients. beta-chain V-region usage was also restricted, with either TCRBV14 or TCRBV7 expressed by all but one clone. In addition, a conserved TCRAV2S1/TCRBV14 combination was expressed in four CTL clones from three patients. None of these V-region genes was found in a group of four HLA-A2-restricted CTL clones recognizing different antigens (e.g., tyrosinase) on the autologous tumor. TCR joining regions were heterogeneous, although conserved structural features were observed in the complementarity-determining region 3 sequences. These results indicate that a selective repertoire of TCR genes is used in anti-melanoma responses when the response is narrowed to major histocompatibility complex-restricted antigen-specific interactions.
Resumo:
Technology demonstration sites for remote water management for Roma region.
Resumo:
The PRP17 gene product is required for the second step of pre-mRNA splicing reactions. The C-terminal half of this protein bears four repeat units with homology to the beta transducin repeat. Missense mutations in three temperature-sensitive prp17 mutants map to a region in the N-terminal half of the protein. We have generated, in vitro, 11 missense alleles at the beta transducin repeat units and find that only one affects function in vivo. A phenotypically silent missense allele at the fourth repeat unit enhances the slow-growing phenotype conferred by an allele at the third repeat, suggesting an interaction between these domains. Although many missense mutations in highly conserved amino acids lack phenotypic effects, deletion analysis suggests an essential role for these units. Only mutations in the N-terminal nonconserved domain of PRP17 are synthetically lethal in combination with mutations in PRP16 and PRP18, two other gene products required for the second splicing reaction. A mutually allele-specific interaction between Prp17 and snr7, with mutations in U5 snRNA, was observed. We therefore suggest that the functional region of Prp17p that interacts with Prp18p, Prp16p, and U5 snRNA is the N terminal region of the protein.
Resumo:
We present the theoretical foundations for the multiple rendezvous problem involving design of local control strategies that enable groups of visibility-limited mobile agents to split into subgroups, exhibit simultaneous taxis behavior towards, and eventually rendezvous at, multiple unknown locations of interest. The theoretical results are proved under certain restricted set of assumptions. The algorithm used to solve the above problem is based on a glowworm swarm optimization (GSO) technique, developed earlier, that finds multiple optima of multimodal objective functions. The significant difference between our work and most earlier approaches to agreement problems is the use of a virtual local-decision domain by the agents in order to compute their movements. The range of the virtual domain is adaptive in nature and is bounded above by the maximum sensor/visibility range of the agent. We introduce a new decision domain update rule that enhances the rate of convergence by a factor of approximately two. We use some illustrative simulations to support the algorithmic correctness and theoretical findings of the paper.
Resumo:
The immunoglobulin kappa gene locus encodes 95% of the light chains of murine antibody molecules and is thought to contain up to 300 variable (V kappa)-region genes generally considered to comprise 20 families. To delineate the locus we have isolated 29 yeast artificial chromosome genomic clones that form two contigs, span > 3.5 megabases, and contain two known non-immunoglobulin kappa markers. Using PCR primers specific for 19 V kappa gene families and Southern analysis, we have refined the genetically defined order of these V kappa gene families. Of these, V kappa 2 maps at least 3.0 Mb from the joining (J kappa) region and appears to be the most distal V kappa gene segment.
Resumo:
Open reading frames in the Plasmodium falciparum genome encode domains homologous to the adhesive domains of the P. falciparum EBA-175 erythrocyte-binding protein (eba-175 gene product) and those of the Plasmodium vivax and Plasmodium knowlesi Duffy antigen-binding proteins. These domains are referred to as Duffy binding-like (DBL), after the receptor that determines P. vivax invasion of Duffy blood group-positive human erythrocytes. Using oligonucleotide primers derived from short regions of conserved sequence, we have developed a reverse transcription-PCR method that amplifies sequences encoding the DBL domains of expressed genes. Products of these reverse transcription-PCR amplifications include sequences of single-copy genes (including eba-175) and variably transcribed genes that cross-hybridize to multiple regions of the genome. Restriction patterns of the multicopy genes show a high degree of polymorphism among different parasite lines, whereas single-copy genes are generally conserved. Characterization of the single-copy genes has identified a gene (ebl-1) that is related to eba-175 and is likely to be involved in erythrocyte invasion.