69 resultados para IMMUNOCOMPETENCE
Resumo:
Background: Condition-dependence is a ubiquitous feature of animal life histories and has important implications for both natural and sexual selection. Mate choice, for instance, is typically based on condition-dependent signals. Theory predicts that one reason why condition-dependent signals may be special is that they allow females to scan for genes that confer high parasite resistance. Such explanations require a genetic link between immunocompetence and body condition, but existing evidence is limited to phenotypic associations. It remains unknown, therefore, whether females selecting males with good body condition simply obtain a healthy mate, or if they acquire genes for their offspring that confer high immunocompetence. Results: Here we use a cross-foster experimental design to partition the phenotypic covariance in indices of body condition and immunocompetence into genetic, maternal and environmental effects in a passerine bird, the zebra finch Taeniopygia guttata. We show that there is significant positive additive genetic covariance between an index of body condition and an index of cell-mediated immune response. In this case, genetic variance in the index of immune response explained 56% of the additive genetic variance in the index of body condition. Conclusion: Our results suggest that, in the context of sexual selection, females that assess males on the basis of condition-dependent signals may gain genes that confer high immunocompetence for their offspring. More generally, a genetic correlation between indices of body condition and imuunocompetence supports the hypothesis that parasite resistance may be an important target of natural selection. Additional work is now required to test whether genetic covariance exists among other aspects of both condition and immunocompetence.
Resumo:
Testosterone can benefit individual fitness by increasing ornament colour, aggressiveness, and sperm quality, but it can also impose both metabolic and immunological costs. However, evidence that testosterone causes immuno suppression in freely living populations is scant. We studied the effects of testosterone on one component of the immune system (i.e., the cell-mediated response to phytohaemagglutinin), parasite load, and metabolic rate in the common wall lizard, Podarcis muralis (Laurenti, 1768). For analyses of immunocompetence and parasitism, male lizards were implanted at the end of the breeding season with either empty or testosterone implants and were returned to their site of capture for 5-6 weeks before recapture. For analyses of the effects of testosterone on metabolic rate, male lizards were captured and implanted before hibernation and were held in the laboratory for 1 week prior to calorimetry. Experimental treatment with testosterone decreased the cell-mediated response to the T-cell mitogen phytohemagglutinin and increased mean metabolic rate. No effects of testosterone on the number of ectoparasites, hemoparasites, and resting metabolic rate could be detected. These results are discussed in the framework of the immunocompetence handicap hypothesis and the immuno-redistribution process hypothesis. [Authors]
Resumo:
In altricial birds post-fledging survival is usually positively related to nestling body mass. A large number of studies have shown that the latest hatched chick is the more likely to die, even if food is abundant. Here we suggest that ectoparasites may be a key factor in the evolution and the maintenance of the establishment of weight hierarchies within broods. We prepose the hypothesis that weight hierarchies within broods may be adaptive if the chick in poor condition is the one with the least efficient immune system within a nest. In this case parasites would preferentially feed on such a "tasty chick", because it would allow high reproductive rates for the parasites, without negatively affecting the survival of the other nestlings. This could prevent entire nest failure of the brood or allow the other chicks to grow more efficiently. This hypothesis was investigated in a colony of house martins Delichon urbica. We predicted that immunocompetence was positively correlated with body condition, and that nestlings dying before hedging should have lower immune responses when challenged with an antigen. T-cell immune response to an experimentally injected antigen was strongly positively related to body condition. Non-surviving chicks had low body condition and a weak immune response. The implications of these results are discussed in the context of the adaptive significance of hatching asynchrony.
Resumo:
1. The immune system plays an important role in fitness, and interindividual variation in immunocompetence is due to several factors including food supply. 2. Seasonal variation in food resources may therefore explain why immunocompetence in bird nestlings usually declines throughout the breeding season, with chicks born early in the season receiving more food than chicks born later, and thereby possibly developing a more potent immune system. Although there are studies supporting this hypothesis, none has been experimental. 3. We performed an experiment in the kittiwake Rissa tridactyla by manipulating the food supply of pairs that were left to produce a first brood, and of pairs that were induced to produce a late replacement brood. 4. If food supply mediates, at least partially, seasonal variations in chick immunocompetence, non-food-supplemented chicks would show a stronger seasonal decline in immunocompetence than food-supplemented chicks. 5. Food supplementation improved humoral immunocompetence (the production of immunoglobulins Y), but not T-cell immunocompetence (phytohaemagglutinin, PHA response). T-cell immunocompetence of food-supplemented and non-food-supplemented chicks decreased through the season but to a similar extent, whereas the humoral immunocompetence of non-food-supplemented chicks decreased more strongly than that of food-supplemented chicks. 6. Our results suggest that the seasonal decline in humoral immunocompetence can be explained, at least partly, by variations in food supply throughout the breeding season.
Resumo:
Given the intimate association in host-parasite systems, parasites are expected to initiate their own reproduction when vulnerable hosts become abundant and/or when adult hosts are less resistant. In this study, we examined the variation in the intensities of a blood-sucking mite (Spinturnix myoti, Acarina) with respect to the reproductive cycle and immunocompetence of its host, the greater mouse-eared bat Myotis myotis. Reproductive, pregnant females were less immunocompetent and harboured more parasites than nonreproductive females, whilst, during lactation, immunocompetence was positively associated with female body mass. There was a dramatic increase in the T-cell response of gravid females with the advancement of gestation, which coincided with a diminution of individual parasite loads and a progressive switch of parasites from adults to juveniles. The latter not only harboured greater numbers of mites than adult female bats, but they also exhibited gravid parasites in higher proportions, indicating that juvenile hosts are more attractive for parasite reproduction than adult females.
Resumo:
Adoptive transfer of autologous or allogenic T cells to patients is being used with increased frequency as a therapy for infectious diseases and cancer. However, many questions remain with regard to defining optimized procedures for preparation and selection of T cell populations for transfer. In a new study in this issue of the JCI, Gattinoni and colleagues used a TCR transgenic mouse model to examine in vitro-generated tumor antigen-specific CD8+ T cells at various stages of differentiation for their efficacy in adoptive immunotherapy against transplantable melanoma. The results confirm that CD8+ T cells progressively lose immunocompetence with prolonged in vitro cultivation and suggest that effector CD8+ T cells alone may be considerably less potent at protecting hosts with advanced tumors than are less differentiated T cells.
Resumo:
Knowledge of the role of origin-related, environmental, sex, and age factors on host defence mechanisms is important to understand variation in parasite intensity. Because alternative components of parasite defence may be differently sensitive to various factors, they may not necessarily covary. Many components should therefore be considered to tackle the evolution of host-parasite interactions. In a population of barn owls (Tyto alba), we investigated the role of origin-related, environmental (i.e. year, season, nest of rearing, and body condition), sex, and age factors on 12 traits linked to immune responses [humoral immune responses towards sheep red blood cells (SRBC), human serum albumin (HSA) and toxoid toxin TT, T-cell mediated immune response towards the mitogen phytohemagglutinin (PHA)], susceptibility to ectoparasites (number and fecundity of Carnus haemapterus, number of Ixodes ricinus), and disease symptoms (size of the bursa of Fabricius and spleen, proportion of proteins that are immunoglobulins, haematocrit and blood concentration in leucocytes). Cross-fostering experiments allowed us to detect a heritable component of variation in only four out of nine immune and parasitic parameters (i.e. SRBC- and HSA-responses, haematocrit, and number of C. haemapterus). However, because nestlings were not always cross-fostered just after hatching, the finding that 44% of the immune and parasitic parameters were heritable is probably an overestimation. These experiments also showed that five out of these nine parameters were sensitive to the nest environment (i.e. SRBC- and PHA-responses, number of C. haemapterus, haematocrit and blood concentration in leucocytes). Female nestlings were more infested by the blood-sucking fly C. haemapterus than their male nestmates, and their blood was less concentrated in leucocytes. The effect of year, season, age (i.e. reflecting the degree of maturation of the immune system), brood size, position in the within-brood age hierarchy, and body mass strongly differed between the 12 parameters. Different components of host defence mechanisms are therefore not equally heritable and sensitive to environmental, sex, and age factors, potentially explaining why most of these components did not covary.
Resumo:
Influence of acute salinity stress on the immunological and physiological response of Penaeus monodon to white spot syndrome virus (WSSV) infection was analysed. P. monodon maintained at 15‰ were subjected to acute salinity changes to 0‰ and 35‰ in 7 h and then challenged orally with WSSV. Immune variables viz., total haemocyte count, phenol oxidase activity (PO), nitroblue tetrazolium salt (NBT) reduction, alkaline phosphatase activity (ALP), acid phosphatase activity (ACP) and metabolic variables viz., total protein, total carbohydrates, total free amino acids (TFAA), total lipids, glucose and cholesterol were determined soon after salinity change and on post challenge days 2 (PCD2) and 5 (PCD5). Acute salinity change induced an increase in metabolic variables in shrimps at 35‰ except TFAA. Immune variables reduced significantly (Pb0.05) in shrimps subjected to salinity stress with the exception of ALP and PO at 35‰ and the reduction was found to be more at 0‰. Better performance of metabolic and immune variables in general could be observed in shrimps maintained at 15‰ that showed significantly higher post challenge survival following infection compared to those under salinity stress. Stress was found to be higher in shrimps subjected to salinity change to lower level (0‰) than to higher level (35‰) as being evidenced by the better immune response and survival at 35‰. THC (Pb0.001), ALP (Pb0.01) and PO (Pb0.05) that together explained a greater percentage of variability in survival rate, could be proposed as the most potential health indicators in shrimp haemolymph. It can be concluded from the study that acute salinity stress induces alterations in the haemolymph metabolic and immune variables of P. monodon affecting the immunocompetence and increasing susceptibility to WSSV, particularly at low salinity stress conditions
Resumo:
Theoretical models of host-parasite coevolution assume a partially genetic basis to the variability in susceptibility to parasites among hosts, for instance as a result of genetic variation in immune function. However, few empirical data exist for free-living vertebrate hosts to support this presumption. In a cross-fostering experiment with nestling great tits, by comparing nestlings of the same origin we investigated (i) the variance in host resistance against an ectoparasite due to a common genetic origin, (ii) the effect of ectoparasite infestation on cell-mediated immunity and (iii) the variance in cell-mediated immunity due to a common genetic origin. Ectoparasitic hen fleas can impair the growth of nestling great tits and nestling growth was therefore taken as a measure of host susceptibility. A common origin did not account for a significant part of the variation in host susceptibility to fleas. There was no significant overall effect of fleas on nestling growth or cell-mediated immunity, as assessed by a cutaneous hypersensitivity response. A common rearing environment explained a significant part of the variation in cell-mediated immunity among nestlings, mainly through its effect on nestling body mass. The variation in cell-mediated immunity was also related to a common origin. However, the origin-related variation in body mass did not account for the origin-related differences in cell-mediated immunity. The results of the present study thus suggest heritable variation in cell-mediated immunity among nestling great tits. [References: 49]
Resumo:
Parasites have been argued to influence clutch size evolution, but past work and theory has largely focused on within-species optimization solutions rather than clearly addressing among-species variation. The effects of parasites on clutch size variation among species can be complex, however, because different parasites can induce age-specific differences in mortality that can cause clutch size to evolve in different directions. We provide a conceptual argument that differences in immunocompetence among species should integrate differences in overall levels of parasite-induced mortality to which a species is exposed. We test this assumption and show that mortality caused by parasites is positively correlated with immunocompetence measured by cell-mediated measures. Under life history theory, clutch size should increase with increased adult mortality and decrease with increased juvenile mortality. Using immunocompetence as a general assay of parasite-induced mortality, we tested these predictions by using data for 25 species. We found that clutch size increased strongly with adult immunocompetence. In contrast, clutch size decreased weakly with increased juvenile immunocompetence. But, immunocompetence of juveniles may be constrained by selection on adults, and, when we controlled for adult immunocompetence, clutch size decreased with juvenile immunocompetence. Thus, immunocompetence seems to reflect evolutionary differences in parasite virulence experienced by species, and differences in age-specific parasite virulence appears to exert opposite selection on clutch size evolution.
Resumo:
Senegalese sole (Solea senegalensis) has been considered since the 1990´s to be a promising flatfish species for diversifying European marine aquaculture. However, pathogen outbreaks leading to high mortality rates can impair Senegalese sole commercial production at the weaning phase. Different approaches have been shown to improve fish immunocompetence; with this in mind the objective of the work described herein was to determine whether increased levels of dietary vitamin A (VA) improve the immune response in early juveniles of Senegalese sole. For this purpose, Senegalese sole were reared and fed with Artemia metanauplii containing increased levels of VA (37,000; 44,666; 82,666 and 203,000 total VA IU Kg-1) from 6 to 60 days post-hatch (early juvenile stage). After an induced bacterial infection with a 50 % lethal dose of Photobacterium damselae subsp. damselae, survival rate, as well as underlying gene expression of specific immune markers (C1inh, C3, C9, Lgals1, Hamp, LysC, Prdx1, Steap4 and Transf) were evaluated. Results showed that fish fed higher doses of dietary VA were more resistant to the bacterial challenge. The lower mortality was found to be related with differential expression of genes involved in the complement system and iron availability. We suggest that feeding metamorphosed Senegalese sole with 203,000 total VA IU Kg-1 might be an effective, inexpensive and environmentally friendly method to improve Senegalese sole immunocompetence, thereby improving survival of juveniles and reducing economic losses.
Resumo:
Although Aspergillus is widespread, clinically significant disease is rare in immunocompetent patients. We present a case of an otherwise healthy individual who developed cerebral vasculitis and stroke symptoms from Aspergillus, to raise awareness of this entity. (C) 2010 Elsevier Inc.
Resumo:
More than 30% of the patients on peritoneal dialysis show chronic systemic inflammatory activity with high levels of C-reactive protein. The purpose of this cross-sectional study was to investigate the influence of the inflammatory state on clinical and nutritional markers in patients on peritoneal dialysis. Twenty-seven patients were included: mean age was 57.6 +/- 19 years, 48% were male, and median time on peritoneal dialysis was 16.0 (8.3; 35.8) months. Clinical, dialytic, laboratory, anthropometric and electric bioimpedance data were collected with the sample stratified for C-reactive protein. In patients, the levels of Interleukin-6 and tumor necrosis factor-a were higher, while adiponectin levels were lower than in healthy individuals (p <= 0.001), indicating the presence of inflammatory activity in the sample. When compared to patients with C-reactive protein < 1 mg/dL, those with = 1mg/dL showed higher body mass index (29.4 +/- 6.1 vs. 24.4 +/- 4.5 kg/m(2); p = 0.009), percent of standard body weight (124.5 +/- 25.4 vs. 106.8 +/- 17.9 %; p = 0.012), and percent of body fat as assessed by both anthropometry (31.3 +/- 9.9 vs. 23.9 +/- 9.1%; p = 0.056) and bioimpedance (38.9 +/- 6.3 vs. 26.2 +/- 12.6 %; p < 0.001). Patients with C-reactive protein = 1mg/dL also exhibited higher levels of ferritin (701 +/- 568 vs. 532 +/- 356 ng/mL; p = 0.054) and lower total lymphocyte count (median 1838 vs. 1638 mm(3); p = 0.001). In conclusion, higher body mass index and body fat markers were associated with C-reactive protein = 1mg/dL, and higher C-reactive protein was associated with immunocompetence impairment evidenced by the lower total lymphocyte count. Our findings confirm the relationship between inflammation, body fat, and immunocompetence, which may be superimposed potentializing the inflammatory status.
Resumo:
A deficiency in secretory immunoglobulin A (sIgA) is associated with recurrent upper respiratory tract infections both in the general community and in elite athletes. The aim of this paper was to investigate the effect of aerobic exercise and relaxation on various indices of sIgA in 12 male and 8 female adults who varied in levels of recreational activity. Salivary samples were obtained before, immediately after and 30 minutes after an incremental cycle ergometer test to fatigue. after 30 minutes of cycling at 30% or 60 % of maximum heart rate, and after 30 minutes of relaxation with guided imagery. Each session was run on a separate day. When expressed in relation to changes in salivary flow rate, sIgA did not change after exercise. However, both the absolute concentration and secretion rate of sIgA increased during relaxation (167 +/- 179 mug ml(-1), p < 0.001: and 37 +/- 71 g(.)min(-1), p < 0.05 respectively). Nonspecific protein increased more than sIgA during incremental exercise to fatigue (decrease in the sIgA/protein ratio 92 +/- 181 g(.)mg protein(-1), p(0.05), but sIgA relative to protein did not change during relaxation. Our findings suggest that sIgA secretion rate is a more appropriate measure of sIgA than sIgA relative to protein, both for exercise and relaxation. These data suggest the possibility of using relaxation to counteract the negative effects of intense exercise on sIgA levels.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.