969 resultados para IMAGE FORESTING TRANSFORM (IFT)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents an optimum user-steered boundary tracking approach for image segmentation, which simulates the behavior of water flowing through a riverbed. The riverbed approach was devised using the image foresting transform with a never-exploited connectivity function. We analyze its properties in the derived image graphs and discuss its theoretical relation with other popular methods such as live wire and graph cuts. Several experiments show that riverbed can significantly reduce the number of user interactions (anchor points), as compared to live wire for objects with complex shapes. This paper also includes a discussion about how to combine different methods in order to take advantage of their complementary strengths.
Resumo:
Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.
Resumo:
Vários métodos tradicionais de segmentação de imagens, como a transformada de watershed de marcado- res e métodos de conexidade fuzzy (Relative Fuzzy Connectedness- RFC, Iterative Relative Fuzzy Connected- ness - IRFC), podem ser implementados de modo eficiente utilizando o método em grafos da Transformada Imagem-Floresta (Image Foresting Transform - IFT). No entanto, a carência de termos de regularização de fronteira em sua formulação fazem com que a borda do objeto segmentado possa ser altamente irregular. Um modo de contornar isto é por meio do uso de restrições de forma do objeto, que favoreçam formas mais regulares, como na recente restrição de convexidade geodésica em estrela (Geodesic Star Convexity - GSC). Neste trabalho, apresentamos uma nova restrição de forma, chamada de Faixa de Restrição Geodésica (Geodesic Band Constraint - GBC), que pode ser incorporada eficientemente em uma sub-classe do fra- mework de corte em grafos generalizado (Generalized Graph Cut - GGC), que inclui métodos pela IFT. É apresentada uma prova da otimalidade do novo algoritmo em termos de um mínimo global de uma função de energia sujeita às novas restrições de borda. A faixa de restrição geodésica nos ajuda a regularizar a borda dos objetos, consequentemente melhorando a segmentação de objetos com formas mais regulares, mantendo o baixo custo computacional da IFT. A GBC pode também ser usada conjuntamente com um mapa de custos pré estabelecido, baseado em um modelo de forma, de modo a direcionar a segmentação a seguir uma dada forma desejada, com grau de liberdade de escala e demais deformações controladas por um parâmetro único. Essa nova restrição também pode ser combinada com a GSC e com as restrições de polaridade de borda sem custo adicional. O método é demonstrado em imagens naturais, sintéticas e médicas, sendo estas provenientes de tomografias computadorizadas e de ressonância magnética.
Resumo:
Thermal faceprint has been paramount in the last years. Since we can handle with face recognition using images acquired in the infrared spectrum, an unique individual's signature can be obtained through the blood vessels network of the face. In this work, we propose a novel framework for thermal faceprint extraction using a collection of graph-based techniques, which were never used to this task up to date. A robust method of thermal face segmentation is also presented. The experiments, which were conducted over the UND Collection C dataset, have showed promising results. © 2011 Springer-Verlag.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Many methods based on biometrics such as fingerprint, face, iris, and retina have been proposed for person identification. However, for deceased individuals, such biometric measurements are not available. In such cases, parts of the human skeleton can be used for identification, such as dental records, thorax, vertebrae, shoulder, and frontal sinus. It has been established in prior investigations that the radiographic pattern of frontal sinus is highly variable and unique for every individual. This has stimulated the proposition of measurements of the frontal sinus pattern, obtained from x-ray films, for skeletal identification. This paper presents a frontal sinus recognition method for human identification based on Image Foresting Transform and shape context. Experimental results (ERR = 5,82%) have shown the effectiveness of the proposed method.
Resumo:
A new approach for recognizing the iris of the human eye is presented. Zero-crossings of the wavelet transform at various resolution levels are calculated over concentric circles on the iris, and the resulting one-dimensional (1-D) signals are compared with model features using different dissimilarity functions.
Resumo:
A more powerful tool for binary image processing, i.e., logic-operated mathematical morphology (LOMM), is proposed. With LOMM the image and the structuring element (SE) are treated as binary logical variables, and the MULTIPLY between the image and the SE in correlation is replaced with 16 logical operations. A total of 12 LOMM operations are obtained. The optical implementation of LOMM is described. The application of LOMM and its experimental results are also presented. (C) 1999 Optical Society of America.
Resumo:
Highly sensitive infrared cameras can produce high-resolution diagnostic images of the temperature and vascular changes of breasts. Wavelet transform based features are suitable in extracting the texture difference information of these images due to their scale-space decomposition. The objective of this study is to investigate the potential of extracted features in differentiating between breast lesions by comparing the two corresponding pectoral regions of two breast thermograms. The pectoral regions of breastsare important because near 50% of all breast cancer is located in this region. In this study, the pectoral region of the left breast is selected. Then the corresponding pectoral region of the right breast is identified. Texture features based on the first and the second sets of statistics are extracted from wavelet decomposed images of the pectoral regions of two breast thermograms. Principal component analysis is used to reduce dimension and an Adaboost classifier to evaluate classification performance. A number of different wavelet features are compared and it is shown that complex non-separable 2D discrete wavelet transform features perform better than their real separable counterparts.
Resumo:
The detection of line-like features in images finds many applications in microanalysis. Actin fibers, microtubules, neurites, pilis, DNA, and other biological structures all come up as tenuous curved lines in microscopy images. A reliable tracing method that preserves the integrity and details of these structures is particularly important for quantitative analyses. We have developed a new image transform called the "Coalescing Shortest Path Image Transform" with very encouraging properties. Our scheme efficiently combines information from an extensive collection of shortest paths in the image to delineate even very weak linear features. © Copyright Microscopy Society of America 2011.
Resumo:
We present a signal processing approach using discrete wavelet transform (DWT) for the generation of complex synthetic aperture radar (SAR) images at an arbitrary number of dyadic scales of resolution. The method is computationally efficient and is free from significant system-imposed limitations present in traditional subaperture-based multiresolution image formation. Problems due to aliasing associated with biorthogonal decomposition of the complex signals are addressed. The lifting scheme of DWT is adapted to handle complex signal approximations and employed to further enhance the computational efficiency. Multiresolution SAR images formed by the proposed method are presented.
Resumo:
Denoising of images in compressed wavelet domain has potential application in transmission technology such as mobile communication. In this paper, we present a new image denoising scheme based on restoration of bit-planes of wavelet coefficients in compressed domain. It exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each band. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with conventional unrestored scheme, in context of error reduction and has capability to adapt to situations where noise level in the image varies. The applicability of the proposed approach has implications in restoration of images due to noisy channels. This scheme, in addition, to being very flexible, tries to retain all the features, including edges of the image. The proposed scheme is computationally efficient.
Resumo:
Denoising of images in compressed wavelet domain has potential application in transmission technology such as mobile communication. In this paper, we present a new image denoising scheme based on restoration of bit-planes of wavelet coefficients in compressed domain. It exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each band. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with conventional unrestored scheme, in context of error reduction and has capability to adapt to situations where noise level in the image varies. The applicability of the proposed approach has implications in restoration of images due to noisy channels. This scheme, in addition, to being very flexible, tries to retain all the features, including edges of the image. The proposed scheme is computationally efficient.