976 resultados para IL-12R beta 2 chain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beta 2 subunit of the interleukin (IL)-12 receptor (IL-12R beta 2) has been shown to play an essential role in differentiation of T helper 1 (Th1) cells in the murine and human system, and antibodies raised against IL-12R beta 2 recognized this molecule on human Th1 but not Th2 cells. However, while the cytokines secreted by clones of murine cells allowed the definition of distinct T helper cell subsets, bovine clones with polarized Th1 and Th2 cytokine profiles were rarely found. This raised important questions about the regulation of immune responses in cattle. We therefore cloned bovine IL-12R beta2 (boIL-12R beta 2) DNA complementary to RNA (cDNA) from the start codon to the 3' end of the mRNA. Comparison of boIL-12R beta 2 cDNA with human and murine IL-12R beta 2 cDNA sequences revealed homologies of 85 and 78%, respectively. The deduced protein sequence showed the hallmark motifs of the cytokine receptor superfamily including the four conserved cysteine residues, the WSXWS motif and fibronectin domains in the extracellular part as well as a STAT4 binding site in the intracellular part of the molecule. Using real-time reverse transcription-polymerase chain reaction, upregulation of mRNA expression of this molecule could be demonstrated in cultured bovine lymph node cells stimulated with phytohemagglutinin. Furthermore, cells with upregulated boIL-12R beta 2 mRNA responded with enhanced expression of interferon gamma to treatment with interleukin 12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioidomycosis patients present an antigen-specific Th1 immunosuppression. To better understand this phenomenon, we evaluated the interleukin (IL)-12 pathway by measuring IL-12p70 production and CD3(+) T cell expression of the IL-12 receptor (IL-12R)beta1/beta2 chains, induced with the main fungus antigen (gp43) and a control antigen, from Candida albicans (CMA). We showed that gp43-induced IL-12p70 production and IL-12Rbeta2 expression were significantly decreased in acute and chronic patients as compared to healthy subjects cured from PCM or healthy infected subjects from endemic areas. Interestingly, the healthy infected Subjects had higher gp43-induced IL12p70 production and beta2 expression than the cured subjects. The addition of a neutralizing anti-IL-10 antibody to the cultures increased IL12p70 levels and beta2 expression in acute and chronic patients to levels observed in Cured subjects. Conversely, addition of the cytokine IL-10 strongly inhibited both parameters in the latter group. In conclusion, we have shown that paracoccidioidomycosis-related Th1 immunosuppression is associated with down-modulation of the IL-12 pathway, that IL-10 may participate in this process, and that patients cured from paracoccidioidomycosis may not fully recover their immune responsiveness. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motility of T cells depends on the dynamic spatial regulation of integrin-mediated adhesion and de-adhesion. Cathepsin X, a cysteine protease, has been shown to regulate T-cell migration by interaction with lymphocyte function associated antigen-1 (LFA-1). LFA-1 adhesion to the ICAM-1 is controlled by the association of actin-binding proteins with the cytoplasmic tail of the beta(2) chain of LFA-1. Cleavage by cathepsin X of the amino acid residues S(769), E(768) and A(767) from the C-terminal of the beta(2) cytoplasmic tail of LFA-1 is shown to promote binding of the actin-binding protein alpha-actinin-1. Furthermore, cathepsin X overexpression reduced LFA-1 clustering and induced an intermediate affinity LFA-1 conformation that is known to associate with a-actinin-1. increased levels of intermediate affinity LFA-1 resulted in augmented cell spreading due to reduced attachment of T cells to the ICAM-1-coated surface. Gradual cleavage of LFA-1 by cathepsin X enables the transition between intermediate and high affinity LFA-1, an event that is crucial for effective T-cell migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burkholderia cenocepacia infections in CF patients involve heightened inflammation, fatal sepsis, and high antibiotic resistance. Proinflammatory IL-1 beta secretion is important in airway inflammation and tissue damage. However, little is known about this pathway in macrophages upon B. cenocepacia infection. We report here that murine macrophages infected with B. cenocepacia K56-2 produce proinflammatory cytokine IL-1 beta in a TLR4 and caspase-1-mediated manner. We also determined that the OPS (O antigen) of B. cenocepacia LPS contributes to IL-1 beta production and pyroptotic cell death. Furthermore, we showed that the malfunction of the CFTR channel augmented IL-1 beta production upon B. cenocepacia infection of murine macrophages. Taken together, we identified eukaryotic and bacterial factors that contribute to inflammation during B. cenocepacia infection, which may aid in the design of novel approaches to control pulmonary inflammation. J. Leukoc. Biol. 89: 481-488; 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-affinity interleukin 2 (IL-2) receptor (IL-2R) consists of three subunits: the IL-2R alpha, IL-2R beta c, and IL-2R gamma c chains. Two members of the Janus kinase family, Jak1 and Jak3, are associated with IL-2R beta c and IL-2R gamma c, respectively, and they are activated upon IL-2 stimulation. The cytokine-mediated Jak kinase activation usually results in the activation of a family of latent transcription factors termed Stat (signal transducer and activator of transcription) proteins. Recently, the IL-2-induced Stat protein was purified from human lymphocytes and found to be the homologue of sheep Stat5/mammary gland factor. We demonstrate that the human Stat5 is activated by IL-2 and that Jak3 is required for the efficient activation. The cytoplasmic region of the IL-2R beta c chain required for activation of Stat5 is mapped within the carboxyl-terminal 147 amino acids. On the other hand, this region is not essential for IL-2-induced cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that mice lacking the IL-12-specific receptor subunit ß2 (IL-12Rß2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rß2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rß2-/- mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rß2-deficient mice to autoimmune diseases. T cells from IL-12Rß2-/- mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25+CD4+ regulatory T cells (Tregs) in the thymus and spleen of IL-12Rß2-/- mice were comparable to those of WT mice. However, IL-12Rß2-/- mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-ß, as shown by significantly lower numbers of CD25+CD4+ T cells that expressed Foxp3. Functionally, CD25+CD4+ Tregs derived from IL-12Rß2-/- mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rß2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rß2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway. Copyright © 2008 by The American Association of Immunologists, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. In the present study, the role of macrophages and mast cells in mineral trioxide aggregate (MTA)-induced release of neutrophil chemotactic factor was investigated.Study design. MTA suspension (50 mg/mL) was plated over inserts on macrophages or mast cells for 90 minutes. Untreated cells served as controls. Cells were washed and cultured for 90 minutes in RPMI without the stimuli. Macrophages and mast cell supernatants were injected intraperitoneally (0.5 mL/cavity), and neutrophil migration was assessed 6 hours later. In some experiments, cells were incubated for 30 minutes with dexamethasone (DEX, 10 mu M/well), BWA4C (BW, 100 mu M/well) or U75302 (U75, 10 mu M/well). The concentration of Leukotriene B-4 (LTB4) in the cell-free supernatant from mast cells and macrophage culture was measured by ELISA.Results. Supernatants from MTA-stimulated macrophages and mast cells caused neutrophil migration. The release of neutrophil chemotactic factor by macrophages and mast cells was significantly inhibited by DEX, BW, or U75. Macrophages and mast cells expressed mRNA for interleukin-1 (IL-1)beta and macrophage inflammatory protein-2 (MIP-2) and the pretreatment of macrophages and mast cells with DEX, BW, or U75 significantly altered IL-1 beta and MIP-2 mRNA expression. LTB4 was detected in the MTA-stimulated macrophage supernatant but not mast cells.Conclusions. MTA-induces the release of neutrophil chemotactic factor substances from macrophages and mast cells with participation of IL-1 beta, MIP-2, and LTB4. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e135-e142)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arthritic pain is a serious health problem that affects a large number of patients. Toll-like receptors (TLRs) activation within the joints has been implicated in pathophysiology of arthritis. However, their role in the genesis of arthritic pain needs to be demonstrated. In the present study, it was addressed the participation of TLR2 and TLR4 and their adaptor molecule MyD88 in the genesis of joint hypernociception (a decrease in the nociceptive threshold) during zymosan-induced arthritis. Zymosan injected in the tibio-tarsal joint induced mechanical hypernociception in C57BL/6 wild type mice that was reduced in TLR2 and MyD88 null mice. On the other hand, zymosan-induced hypernociception was similar in C3H/HePas and C3H/Hej mice (TLR4 mutant mice). Zymosan-induced joint hypernociception was also reduced in TNFR1 null mice and in mice treated with IL-1 receptor antagonist or with an antagonist of CXCR1/2. Moreover, the joint production of TNF-alpha, IL-1 beta and CXCL1/KC by zymosan was dependent on TLR2/MyD88 signaling. Investigating the mechanisms by which TNF-alpha, IL-1 beta and CXCL1/KC mediate joint hypernociception, joint administration of these cytokines produced mechanical hypernociception, and they act in an interdependent manner. In last instance, their hypernociceptive effects were dependent on the production of hypernociceptive mediators, prostaglandins and sympathetic amines. These results indicate that in zymosan-induced experimental arthritis, TLR2/MyD88 is involved in the cascade of events of joint hypernociception through a mechanism dependent on cytokines and chemokines production. Thus, TLR2/MyD88 signaling might be a target for the development of novel drugs to control pain in arthritis. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-12 receptor β1 (IL-12Rβ1) deficiency is the most common form of Mendelian susceptibility to mycobacterial disease (MSMD). We undertook an international survey of 141 patients from 102 kindreds in 30 countries. Among 102 probands, the first infection occurred at a mean age of 2.4 years. In 78 patients, this infection was caused by Bacille Calmette-Guérin (BCG; n = 65), environmental mycobacteria (EM; also known as atypical or nontuberculous mycobacteria) (n = 9) or Mycobacterium tuberculosis (n = 4). Twenty-two of the remaining 24 probands initially presented with nontyphoidal, extraintestinal salmonellosis. Twenty of the 29 genetically affected sibs displayed clinical signs (69%); however 8 remained asymptomatic (27%). Nine nongenotyped sibs with symptoms died. Recurrent BCG infection was diagnosed in 15 cases, recurrent EM in 3 cases, recurrent salmonellosis in 22 patients. Ninety of the 132 symptomatic patients had infections with a single microorganism. Multiple infections were diagnosed in 40 cases, with combined mycobacteriosis and salmonellosis in 36 individuals. BCG disease strongly protected against subsequent EM disease (p = 0.00008). Various other infectious diseases occurred, albeit each rarely, yet candidiasis was reported in 33 of the patients (23%). Ninety-nine patients (70%) survived, with a mean age at last follow-up visit of 12.7 years ± 9.8 years (range, 0.5-46.4 yr). IL-12Rβ1 deficiency is characterized by childhood-onset mycobacteriosis and salmonellosis, rare recurrences of mycobacterial disease, and more frequent recurrence of salmonellosis. The condition has higher clinical penetrance, broader susceptibility to infections, and less favorable outcome than previously thought. © 2010 Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloprotease-13 (MMP-13) or collagenase-3 is involved in a number of pathologic processes such as tumor metastasis and angiogenesis, osteoarthritis, rheumatoid arthritis and periodontal diseases. These conditions are associated with extensive degradation of both connective tissue and bone. This report examines gene regulation mechanisms and signal transduction pathways involved in Mmp-13 expression induced by proinflammatory cytokines in periodontal ligament (PDL) fibroblasts. Mmp-13 mRNA expression was increased 10.7 and 9.5 fold after stimulation with IL-1 beta (5 ng/mL) and TNF-alpha (10 ng/mL), respectively. However, inhibition of p38 MAPKinase with SB203580 resulted in significant (p < 0.001) induction (23.2 and 18.1 fold, respectively) of Mmp-13 mRNA as assessed by real time PCR. Negative regulation of IL-1 induced Mmp-13 expression was confirmed by inhibiting p38 MAPK gene expression with siRNA. Transient transfection of dominant negative forms of MKK3 and MKK6 also resulted in increased levels of Mmp-13 mRNA after IL-1 beta stimulation. Mmp-13 mRNA expression induced by TNF-alpha was decreased by JNK and ERK inhibition. Western blot and zymogram analysis indicated that Mmp-13 protein expression induced by the proinflammatory cytokines were also upregulated by inhibition of p38 MAPK. Reporter gene experiments using stable cell lines harboring 660-bp sequence of the murine Mmp-13 proximal promoter indicated that transcriptional mechanisms were at least partially involved in this negative regulation of Mmp-13 expression by p38 MAPK and upstream MKK3/6. These results suggest a negative transcriptional regulatory mechanism mediated by p38 MAPK and upstream MKK3/6 on Mmp-13 expression induced by proinflammatory cytokines in PDL fibroblasts. (c) 2005 Elsevier B.V./International Society of Matrix Biology. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethnopharmacological relevance: The pharmacological activity of geopropolis collected by stingless bees (important and threatened pollinators), a product widely used in folk medicine by several communities in Brazil, especially in the Northeast Region, needs to be studied. Objective: The aim of this study was to evaluate the antinociceptive activity of Melipona scutellaris geopropolis (stingless bee) using different models of nociception. Material and methods: The antinociceptive activity of the ethanolic extract of geopropolis (EEGP) and fractions was evaluated using writhing induced by acetic acid, formalin test, carrageenan-induced hypernociception, and quantification of IL-1 beta and TNF-alpha. The chemical composition was assessed by quantification of total flavonoids and phenolic compounds. Results: EEGP and its hexane and aqueous fractions showed antinociceptive activity. Both EEGP and its aqueous fraction presented activity in the mechanical inflammatory hypernociception induced by the carrageenan model, an effect mediated by the inhibition of IL-1 beta and TNF-alpha. The chemical composition of EEGP and its hexane and aqueous fractions showed a significant presence of phenolic compounds and absence of flavonoids. Conclusion: Our data indicate that geopropolis is a natural source of bioactive substances with promising antinociceptive activity. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zolpidem is a positive allosteric modulator of GABA(A) receptors with sensitivity to subunit composition. While it acts with high affinity and efficacy at GABA(A) receptors containing the alpha(1) subunit, it has a lower affinity to GABA(A) receptors containing alpha(2), alpha(3), or alpha(5) subunits and has a very weak efficacy at receptors containing the alpha(5) subunit. Here, we show that replacing histidine in position 105 in the alpha(5) subunit by cysteine strongly stimulates the effect of zolpidem in receptors containing the alpha(5) subunit. The side chain volume of the amino acid residue in this position does not correlate with the modulation by zolpidem. Interestingly, serine is not able to promote the potentiation by zolpidem. The homologous residues to alpha(5)H105 in alpha(1), alpha(2), and alpha(3) are well-known determinants of the action of classical benzodiazepines. Other studies have shown that replacement of these histidines alpha(1)H101, alpha(2)H101, and alpha(3)H126 by arginine, as naturally present in alpha(4) and alpha(6), leads to benzodiazepine insensitivity of these receptors. Thus, the nature of the amino acid residue in this position is not only crucial for the action of classical benzodiazepines but in alpha(5) containing receptors also for the action of zolpidem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A threonine to isoleucine polymorphism at amino acid 164 in the fourth transmembrane spanning domain of the beta 2-adrenergic receptor (beta 2AR) is known to occur in the human population. The functional consequences of this polymorphism to catecholamine signaling in relevant cells or to end-organ responsiveness, however, are not known. To explore potential differences between the two receptors, site-directed mutagenesis was carried out to mimic the polymorphism. Transgenic FVB/N mice were then created overexpressing wild-type (wt) beta 2AR or the mutant Ile-164 receptor in a targeted manner in the heart using a murine alpha myosin heavy chain promoter. The functional properties of the two receptors were then assessed at the level of in vitro cardiac myocyte signaling and in vivo cardiac responses in intact animals. The expression levels of these receptors in the two lines chosen for study were approximately 1200 fmol/mg protein in cardiac membranes, which represents a approximately 45-fold increase in expression over endogenous beta AR. Myocyte membrane adenylyl cyclase activity in the basal state was significantly lower in the Ile-164 mice (19.5 +/- 2.7 pmol/min/mg) compared with wt beta 2AR mice (35.0 +/- 4.1 pmol/min/mg), as was the maximal isoproterenol-stimulated activity (49.8 +/- 7.8 versus 77.1 +/ 7.3 pmol/min/mg). In intact animals, resting heart rate (441 +/- 21 versus 534 +/- 17 bpm) and dP/dtmax (10,923 +/- 730 versus 15,308 +/- 471 mmHg/sec) were less in the Ile-164 mice as compared with wt beta 2AR mice. Similarly, the physiologic responses to infused isoproterenol were notably less in the mutant expressing mice. Indeed, these values, as well as other contractile parameters, were indistinguishable between Ile-164 mice and nontransgenic littermates. Taken together, these results demonstrate that the Ile-164 polymorphism is substantially dysfunctional in a relevant target tissue, as indicated by depressed receptor coupling to adenylyl cyclase in myocardial membranes and impaired receptor mediated cardiac function in vivo. Under normal homeostatic conditions or in circumstances where sympathetic responses are compromised due to diseased states, such as heart failure, this impairment may have important pathophysiologic consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of acetylcholine-binding protein ( AChBP) and nicotinic acetylcholine receptor ( nAChR) homology models have been used to interpret data from mutagenesis experiments at the nAChR. However, little is known about AChBP-derived structures as predictive tools. Molecular surface analysis of nAChR models has revealed a conserved cleft as the likely binding site for the 4/7 alpha-conotoxins. Here, we used an alpha 3 beta 2 model to identify beta 2 subunit residues in this cleft and investigated their influence on the binding of alpha-conotoxins MII, PnIA, and GID to the alpha 3 beta 2 nAChR by two-electrode voltage clamp analysis. Although a beta 2-L119Q mutation strongly reduced the affinity of all three alpha-conotoxins, beta 2-F117A, beta 2-V109A, and beta 2-V109G mutations selectively enhanced the binding of MII and GID. An increased activity of alpha-conotoxins GID and MII was also observed when the beta 2-F117A mutant was combined with the alpha 4 instead of the alpha 3 subunit. Investigation of A10L-PnIA indicated that high affinity binding to beta 2-F117A, beta 2-V109A, and beta 2-V109G mutants was conferred by amino acids with a long side chain in position 10 (PnIA numbering). Docking simulations of 4/7 alpha-conotoxin binding to the alpha 3 beta 2 model supported a direct interaction between mutated nAChR residues and alpha-conotoxin residues 6, 7, and 10. Taken together, these data provide evidence that the beta subunit contributes to alpha-conotoxin binding and selectivity and demonstrate that a small cleft leading to the agonist binding site is targeted by alpha-conotoxins to block the nAChR.