15 resultados para IHF


Relevância:

10.00% 10.00%

Publicador:

Resumo:

FimB and FimE are site-specific recombinases, part of the λ integrase family, and invert a 314 bp DNA switch that controls the expression of type 1 fimbriae in Escherichia coli. FimB and FimE differ in their activity towards the fim switch, with FimB catalysing inversion in both directions in comparison to the higher-frequency but unidirectional on-to-off recombination catalysed by FimE. Previous work has demonstrated that FimB, but not FimE, recombination is completely inhibited in vitro and in vivo by a regulator, PapB, expressed from a distinct fimbrial locus. The aim of this work was to investigate differences between FimB and FimE activity by exploiting the differential inhibition demonstrated by PapB. The research focused on genetic changes to the fim switch that alter recombinase binding and its structural context. FimB and FimE still recombined a switch in which the majority of fimS DNA was replaced with a larger region of non-fim DNA. This demonstrated a minimal requirement for FimB and FimE recombination of the Fim binding sites and associated inverted repeats. With the original leucine-responsive regulatory protein (Lrp) and integration host factor (IHF)-dependent structure removed, PapB was now able to inhibit both recombinases. The relative affinities of FimB and FimE were determined for the four ‘half sites’. This analysis, along with the effect of extensive swaps and duplications of the half sites on recombination frequency, demonstrated that FimB recruitment and therefore subsequent activity was dependent on a single half site and its context, whereas FimE recombination was less stringent, being able to interact initially with two half sites with equally high affinity. While increasing FimB recombination frequencies failed to overcome PapB repression, mutations made in recombinase binding sites resulted in inhibition of FimE recombination by PapB. Overall, the data support a model in which the recombinases differ in loading order and co-operative interactions. PapB exploits this difference and FimE becomes susceptible when its normal loading is restricted or changed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: mIHF belongs to a subfamily of proteins, distinct from E. coli IHF. Results: Functionally important amino acids of mIHF and the mechanism(s) underlying DNA binding, DNA bending, and site-specific recombination are distinct from that of E. coli IHF. Conclusion: mIHF functions could contribute beyond nucleoid compaction. Significance: Because mIHF is essential for growth, the molecular mechanisms identified here can be exploited in drug screening efforts. The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ihfA and ihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The annotated whole-genome sequence of Mycobacterium tuberculosis indicated that Rv1388 (Mtihf) likely encodes a putative 20 kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or organization of mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF-duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg170, Arg171, and Arg173, which might be involved in DNA binding, and a conserved proline (P150) in the tight turn. The phenotypic sensitivity of Escherichia coli Delta ihfA and Delta ihfB strains to UV and methylmethanesulfonate could be complemented with the wild-type Mtihf, but not its alleles bearing mutations in the DNA-binding residues. Protein DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, bind with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF alpha beta. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes compaction of DNA into nucleoid-like or higher-order filamentous structures. We hence propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extraintestinal pathogenic Escherichia coli (ExPEC) reside in the enteric tract as a commensal reservoir, but can transition to a pathogenic state by invading normally sterile niches, establishing infection and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. Here, we report that FimX, an ExPEC-associated DNA invertase that regulates the major virulence factor type 1 pili (T1P), is also an epigenetic regulator of a LuxR-like response regulator HyxR. FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the type 1 pili promoter and independent of integration host factor (IHF). In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNIs), primarily through de-repression of hmpA, encoding a nitric oxide-detoxifying flavohaemoglobin. However, in the macrophage, HyxR produced large effects on intracellular survival in the presence and absence of RNI and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vagal baroreflex sensitivity (BRS) is a measure of short term blood pressure (BP) regulation through alterations in heart rate. Low BRS reflects impaired autonomic system regulation and has been found to be a surrogate marker for cardiovascular health. In particular, it has found to be associated with the pathogenesis of adult hypertension. However, only limited information exists as to the negative consequences of childhood BP on baroreflex function. The objective of this study was to investigate BRS in children with 2 different BP profiles while controlling for the effects of age, maturation, sex, and body composition. A preliminary subsample of 11-14 year-old children from the HBEAT (Heart Behavioural Environmental Assessment Team) Study was selected. The children were divided into 2 BP groups; high BP (HBP; 2:95tl1 percentile, n=21) and normal BP (NBP; <90th percentile, n=85). Following an initial 15 minutes of supine rest, 5 minutes of continuous beat-to-beat BP (Finapres) and RR interval (RRI) were recorded (standard ECG). Spectral indices were computed using Fast Fourier Transform and transfer function analysis was used to compute BRS. High frequency (HF) and low frequency (LF) power spectral areas were set to 0.15-0.4 Hz and 0.04-0.15 Hz, respectively. Body composition was measured using body mass index. After adjusting for body composition, maturation, age and sex ANCOV A results were as follows; LF and HF BRS, LF and HF RRI, and RRI total power were lower in the HBP versus NBP participants (p<0.05). As well, LF IHF SBP ratio was significantly higher in the HBP compared to the NBP group (p<0.05). The regression coefficients (unstandardized B) indicated that in changing groups (NBP to HBP) LF and HF BRS decreases by 4.04 and 6.18 ms/mmHg, respectively. Thus, as BP increases, BRS decreases. These data suggest that changes in autonomic activity occur in children who have HBP, regardless of age, sex, maturation, and body composition. Thus, despite their young age and relatively short amount of time having high BP compared with adults, these children are already demonstrating poor BP regulation and reduced cardiovagal activity. Given that childhood BP is associated with hypertension in adulthood, there is a growing concern in regards to the current cardiovascular health of our children and future adults.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

sigma(S) is responsible for the transcriptional regulation of genes related to protection against stresses and bacterial survival and it accumulates in the cell under conditions of stress, such as nutrient limitation. An increase in the levels of sigma(S) causes a reduction in the expression of genes that are transcribed by RNA polymerase associated with the principal sigma factor, sigma(70). phoA, that encodes alkaline phosphatase (AP) is expressed under phosphate shortage conditions, and is also repressed by sigma(S). Here we show that in a Pi-limited chemostat, accumulation of rpoS mutations is proportional to the intrinsic level of sigma(S) in the cells. Acquisition of mutations in rpoS relieves repression of the PHO genes. We also devised a non-destructive method based on the rpoS effect on AP that differentiates between rpo(S+) and rpoS mutants, as well as between high and low-sigma(S) producers. Using this method, we provide evidence that sigma(S) contributes to the repression of AP under conditions of Pi excess and that AP variation among different strains is at least partly due to intrinsic variation in sigma(S) levels. Consequently, a simple and non-destructive AP assay can be employed to differentiate between strains expressing different levels of sigma(S) on agar plates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase variable expression, mediated by high frequency reversible changes in the length of simple sequence repeats, facilitates adaptation of bacterial populations to changing environments and is frequently important in bacterial virulence. Here we elucidate a novel phase variable mechanism for NadA expression, an adhesin and invasin of Neisseria meningitidis. The NadR repressor protein binds to operators flanking the phase variable tract of the nadA promoter gene and contributes to the differential expression levels of phase variant promoters with different numbers of repeats, likely due to different spacing between operators. It is shown that IHF binds between these operators, and may permit looping of the promoter, allowing interaction of NadR at operators located distally or overlapping the promoter. The 4-hydroxyphenylacetic acid, a metabolite of aromatic amino acid catabolism that is secreted in saliva, induces nadA expression by inhibiting the DNA binding activity of the NadR repressor. When induced, only minor differences are evident between NadR-independent transcription levels of promoter phase variants, which are likely due to differential RNA polymerase contacts leading to altered promoter activity. These results suggest that NadA expression is under both stochastic and tight environmental-sensing regulatory control, and both regulations are mediated by the NadR repressor that and may be induced during colonization of the oropharynx where it plays a major role in the successful adhesion and invasion of the mucosa. Hence, simple sequence repeats in promoter regions may be a strategy used by host-adapted bacterial pathogens to randomly switch between expression states that may nonetheless still be induced by appropriate niche-specific signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Elektronentransportsystem von E. coli enthält zwei verschiedene NADH-Dehydrogenasen. Die NADH-DehydrogenaseI (nuoA-N) koppelt im Gegensatz zur NADH-DehydrogenaseII die Oxidation von NADH an eine Protonentranslokation und trägt zur Energiekonservierung bei. Die NADH-DehydrogenaseI wird über die Promotoren P1 und P2 exprimiert und besitzt mehrere Bindestellen für verschiedene Regulatoren.Die separate Klonierung der Promotoren, lacZ-Fusionen, Inaktivierung von Transkriptionsfaktoren, sowie die Nutzung mutierter Regulatorbindestellen in vivo zeigen, dass P1 im wesentlichen die Expressionshöhe bestimmt und ist unter aeroben und anaeroben Bedingungen aktiv. P2 trägt in wesentlich geringerem Maße als P1 zur Expression des Enzyms bei. Er ist stark abhängig von ArcA und IHF. Beide Promotoren wirken nicht additiv.Unter anaeroben Bedingungen wird die Transkription von nuo durch das Zweikomponenten-System ArcB/A reprimiert. ArcA bindet unabhängig und mit unterschiedlicher Affinität an die beiden Bindestellen arc1 und arc2. Von den 8 ArcA-Konsensussequenzen führen nur Mutationen der Konsensussequenzen arc1ab in vitro zu verminderter Bindungsaffinität von ArcA an die Bindestelle arc1. Dieselben führen in vivo unter anaeroben Bedingungen zur Derepression des Promotors P1 bzw. P1+P2. Unter aeroben Bedingungen zeigen nur Mutationen in arc2 eine Derepression, die nicht durch ArcA vermittelt wird. Der veröffentliche ArcA-Konsensus scheint deshalb hier in dieser einfachen Form nicht gültig zu sein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The micrometeorological mass-balance integrated horizontal flux (IHF) technique has been commonly employed for measuring ammonia (NH3) emissions inon-field experiments. However, the inverse-dispersion modeling technique, such as the backward Lagrangian stochastic (bLS) modeling approach, is currently highlighted as offering flexibility in plot design and requiring a minimum number of samplers (Ro et al., 2013). The objective of this study was to make a comparison between the bLS technique with the IHF technique for estimating NH3 emission from flexible bag storage and following landspreading of dairy cattle slurry. Moreover, considering that NH3 emission in storage could have been non uniform, the effect on bLS estimates of a single point and multiple downwind concentration measurements was tested, as proposed by Sanz et al. (2010).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the widely accepted view that transcription of gid and mioC is required for efficient initiation of cloned oriC, we show that these transcriptions have very little effect on initiation of chromosome replication at wild-type chromosomal oriC. Furthermore, neither gid nor mioC transcription is required in cells deficient in the histone-like proteins Fis or IHF. However, oriC that is sufficiently impaired for initiation by deletion of DnaA box R4 requires transcription of at least one of these genes. We conclude that transcription of mioC and especially gid is needed to activate oriC only under suboptimal conditions. We suggest that either the rifampicin-sensitive step of initiation is some other transcription occurring from promoter(s) within oriC, or the original inference of transcriptional activation derived from the rifampicin experiments is incorrect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial integration host factors (IHFs) play central roles in the cellular processes of recombination, DNA replication, transcription, and bacterial pathogenesis. We describe here a novel mycobacterial IHF (mIHF) of Mycobacterium smegmatis and Mycobacterium tuberculosis that stimulates integration of mycobacteriophage L5. mIHF is the product of a single gene and is unrelated at the sequence level to other integration host factors. By itself, mIHF does not bind preferentially to attP DNA, although it significantly alters the pattern of integrase (Int) binding, promoting the formation of specific integrase–mIHF–attP intasome complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integration host factor (IHF) is a DNA-bending protein that binds to an upstream activating sequence (UAS1) and, on a negatively supercoiled DNA template, activates transcription from the ilvPG promoter of the ilvG-MEDA operon of Escherichia coli. The transcriptional initiation site of the ilvGMEDA operon is located 92 bp downstream of UAS1. Activation is still observed when the orientation of the upstream IHF binding site is reversed. This manipulation places the IHF binding site on the opposite face of the DNA helix, directs the IHF-induced DNA bend in the opposite direction, and presents the opposite face of the nonsymmetrical, heterodimeric, IHF molecule to the downstream RNA polymerase. Lymphoid enhancer-binding factor, LEF-1, is a DNA-bending, lymphoid-specific, mammalian transcription factor that shares no amino acid sequence similarity with IHF. When the IHF site in UAS1 is replaced with a LEF-1 site, LEF-1 activates transcription from the downstream ilvPG promoter in E. coli as well as it is activated by its natural activator, IHF. These results suggest that specific interactions between IHF and RNA polymerase are not required for activation. The results of DNA structural studies show that IHF forms a protein-DNA complex in the UAS1 region that, in the absence of RNA polymerase, alters the structure of the DNA helix in the -10 hexanucleotide region of the downstream ilvPG promoter. The results of in vitro abortive transcription assays show that IIIF also increases the apparent rate of RNA polymerase isomerization from a closed to an open complex. We suggest, therefore, that IHF activates transcription by forming a higher-order protein-DNA complex in the UAS1 region that structurally alters the DNA helix in a way that facilitates open complex formation at the downstream ilvPG promoter site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integration of human immunodeficiency virus type 1 cDNA into a target DNA can be strongly influenced by the conformation of the target. For example, integration in vitro is sometimes favored in target DNAs containing sequence-directed bends or DNA distortions caused by bound proteins. We have analyzed the effect of DNA bending by studying integration into two well-characterized protein-DNA complexes: Escherichia coli integration host factor (IHF) protein bound to a phage IHF site, and the DNA binding domain of human lymphoid enhancer factor (LEF) bound to a LEF site. Both of these proteins have previously been reported to bend DNA by approximately 140 degrees. Binding of IHF greatly increases the efficiency of in vitro integration at hotspots within the IHF site. We analyzed a series of mutants in which the IHF site was modified at the most prominent hotspot. We found that each variant still displayed enhanced integration upon IHF binding. Evidently the local sequence is not critical for formation of an IHF hotspot. LEF binding did not create preferred sites for integration. The different effects of IHF and LEF binding can be rationalized in terms of the different proposed conformations of the two protein-DNA complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the presence of m-xylene, the Pu promoter of the TOL plasmid of Pseudomonas putida is activated by the prokaryotic enhancer-binding protein XylR. The intervening DNA segment between the upstream activating sequences (UASs) and those for RNA polymerase binding contains an integration host factor (IHF) attachment site that is required for full transcriptional activity. In the absence of IHF, the Pu promoter can be cross-activated by other members of the sigma 54-dependent family of regulatory proteins. Such illegitimate activation does not require the binding of the heterologous regulators to DNA and it is suppressed by bent DNA structures, either static or protein induced, between the promoter core elements (UAS and RNA polymerase recognition sequence). The role of IHF in some sigma 54 promoters is, therefore, not only a structural aid for assembling a correct promoter geometry but also that of an active suppressor (restrictor) of promiscuous activation by heterologous regulators for increased promoter specificity.