23 resultados para IGF1R
Resumo:
Background Recent experimental and biomarker evidence indicates that the epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor 1 (IGF1R) interact in the pathogenesis of malignant epithelial tumors, including lung cancer. This study examines the expression of both receptors and their prognostic significance in surgically resected non-small-cell lung cancer (NSCLC). Methods EGFR and IGF1R expression were evaluated in 184 patients with NSCLC (83 squamous cell carcinomas [SCCs], 83 adenocarcinomas [ADCs], and 18 other types) using immunohistochemical (IHC) analysis. Expression of both receptors was examined in matched fresh frozen normal and tumor tissues from 40 patients with NSCLC (20 SCCs and 20 ADCs) by Western blot analysis. Results High EGFR expression was detected in 51% of patients, and SCCs had higher EGFR expression than did non-SCCs (57.4% vs. 42.5%; P =.028). High IGF1R expression was observed in 53.8% of patients, with SCC having higher expression than non-SCC (62.6% vs. 37.3%; P =.0004). A significant association was shown between EGFR and IGF1R protein overexpression (P <.005). Patients with high expression of both receptors had a poorer overall survival (OS) (P =.04). Higher EGFR and IGF1R expression was detected in resected tumors relative to matched normal tissues (P =.0004 and P =.0009), with SCC having higher expression levels than ADC. Conclusion Our findings indicate a close interrelationship between EGFR and IGF1R. Coexpression of both receptors correlates with poor survival. This subset of patients may benefit from treatments cotargeting EGFR and IGF1R. © 2014 Elsevier Inc. All rights reserved.
Resumo:
Hypoxia is one of many factors involved in the regulation of the IGF system. However, no information is available regarding the regulation of the IGF system by acute hypoxia in humans. Objective: The aim of this study was to evaluate the effect of acute hypoxia on the IGF system of children. Design: Twenty-seven previously health children (14 boys and 13 girls) aged 15 days to 9.5 years were studied in two different situations: during a hypoxemic state (HS) due to acute respiratory distress and after full recovery to a normoxemic state (NS). In these two situations oxygen saturation was assessed with a pulse-oximeter and blood samples were collected for serum IGF-I, IGF-II, IGFBP-1, IGFBP-3, ALS and insulin determination by ELISA; fluoroimmunometric assay determination for GH and also for IGF1R gene expression analysis in peripheral lymphocytes by quantitative real-time PCR. Data were paired and analyzed by the Wilcoxon non-parametric test. Results: Oxygen saturation was significantly lower during HS than in NS (P<0.0001). IGF-I and IGF-II levels were lower during HS than in NS (P<0.0001 and P=0.0004. respectively). IGFBP-3 levels were also lower in HS than in NS (P=0.0002) while ALS and basal GH levels were higher during HS (P=0.0015 and P=0.014, respectively). Moreover, IGFBP-1 levels were higher during HS than in NS (P=0.004). No difference was found regarding insulin levels. The expression of IGF1R mRNA as 2(-Delta Delta CT) was higher during HS than in NS (P=0.03). Conclusion: The above results confirm a role of hypoxia in the regulation of the IGF system also in humans. This effect could be direct on the liver and/or mediated by GH and it is not restricted to the hepatocytes but involves other cell lines. During acute hypoxia a combination of alterations usually associated with reduced IGF action was observed. The higher expression of IGF1R mRNA may reflect an up-regulation of the transcriptional process. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq
Resumo:
Prostate cancer (CaP) is the most commonly diagnosed cancer in males in Australia, North America, and Europe. If found early and locally confined, CaP can be treated with radical prostatectomy or radiation therapy; however, 25-40% patients will relapse and go on to advanced disease. The most common therapy in these cases is androgen deprivation therapy (ADT), which suppresses androgen production from the testis. Lack of the testicular androgen supply causes cells of the prostate to undergo apoptosis. However, in some cases the regression initially seen with ADT eventually gives way to a growth of a population of cancerous cells that no longer require testicular androgens. This phenotype is essentially fatal and is termed castrate resistant prostate cancer (CRPC). In addition to eventual regression, there are many undesirable side effects which accompany ADT, including development of a metabolic syndrome, which is defined by the U.S. National Library of Medicine as “a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes.” This project will focus on the effect of ADT induced hyperinsulinemia, as mimicked by treating androgen receptor positive CaP cells with insulin in a serum (hormone) deprived environment. While this side effect is not widely explored, in this thesis it is demonstrated for the first time that insulin upregulates pathways important to CaP progression. Our group has previously shown that during CaP progression, the enzymes necessary for de novo steroidogenesis are upregulated in the LNCaP xenograft model, total steroid levels are increased in tumours compared to pre castrate levels, and de novo steroidogenesis from radio-labelled acetate has been demonstrated. Because of the CaP dependence on AR for survival, we and other groups believe that CaP cells carry out de novo steroidogenesis to survive in androgen deprived conditions. Because (a) men on ADT often develop metabolic syndrome, and (b) men with lifestyle-induced obesity and hyperinsulinemia have worse prognosis and faster disease progression, and because (c) insulin causes steroidogenesis in other cell lines, the hypothesis that insulin may contribute to CaP progression through upregulation of steroidogenesis was explored. Insulin upregulates steroidogenesis enzymes at the mRNA level in three AR positive cell lines, as well as upregulating these enzymes at the protein level in two cell lines. It has also been demonstrated that insulin increases mitochondrial (functional) levels of steroid acute regulatory protein (StAR). Furthermore, insulin causes increased levels of total steroids in and induction of de novo steroid synthesis by insulin has been demonstrated at levels induced sufficient to activate AR. The effect of insulin analogs on CaP steroidogenesis in LNCaP and VCaP cells has also been investigated because epidemiological studies suggest that some of the analogs developed may have more cancer stimulatory effects than normal insulin. In this project, despite the signalling differences between glargine, X10, and insulin, these analogs did not appear to induce steroidogenesis any more potently that normal insulin. The effect of insulin of MCF7breast cancer cells was also investigated with results suggesting that breast cancer cells may be capable of de novo steroidogenesis, and that increase in estradiol production may be exacerbated by insulin. Insulin has also been long known to stimulate lipogenesis in the liver and adipocytes, and has been demonstrated to increase lipogenesis in breast cancer cells; therefore, investigation of the effect of insulin on lipogenesis, which is a hallmark of aggressive cancers, was investigated. In CaP progression sterol regulatory element binding protein (SREBP) is dysregulated and upregulates fatty acid synthase (FASN), acetyl CoA-carboxylase, and other lipogenesis genes. SREBP is important for steroidogenesis and in this project has been shown to be upregulated by insulin in CaP cells. Fatty acid synthesis provides building blocks of membrane growth, provides substrates for acid oxidation, the main energy source for CaP cells, provides building blocks for anti-apoptotic and proinflammatory molecules, and provides molecules that stimulate steroidogenesis. In this project it has been shown that insulin upregulates FASN and ACC, which synthesize fatty acids, as well as upregulating hormone sensitive lipase (HSL), diazepam-binding inhibitor (DBI), and long-chain acyl-CoA synthetase 3 (ACSL3), which contribute to lipid activation of steroidogenesis. Insulin also upregulates total lipid levels and de novo lipogenesis, which can be suppressed by inhibition of the insulin receptor (INSR). The fatty acids synthesized after insulin treatment are those that have been associated with CaP; furthermore, microarray data suggests insulin may upregulate fatty acid biosynthesis, metabolism and arachidonic acid metabolism pathways, which have been implicated in CaP growth and survival. Pharmacological agents used to treat patients with hyperinsulinemia/ hyperlipidemia have gained much interest in regards to CaP risk and treatment; however, the scientific rationale behind these clinical applications has not been examined. This thesis explores whether the use of metformin or simvastatin would decrease either lipogenesis or steroidogenesis or both in CaP cells. Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitor, which blocks synthesis of cholesterol, the building block of steroids/ androgens. It has also been postulated to down regulate SREBP in other metabolic disorders. It has been shown in this thesis, in LNCaP cells, that simvastatin inhibited and decreased insulin induced steroidogenesis and lipogenesis, respectively, but increased these pathways in the absence of insulin. Conversely, metformin, which activates AMP-activated protein kinase (AMPK) to shut down lipogenesis, cholesterol synthesis, and protein synthesis, highly suppresses both steroidogenesis and lipogenesis in the presence and absence of insulin. Lastly, because it has been demonstrated to increase steroidogenesis in other cell lines, and because the elucidation of any factors affecting steroidogenesis is important to understanding CaP, the effect of IGF2 on steroidogenesis in CaP cells was investigated. In patient samples, as men progress to CRPC, IGF2 mRNA and the protein levels of the receptors it may signal through are upregulated. It has also been demonstrated that IGF2 upregulates steroidogenic enzymes at both the mRNA and protein levels in LNCaP cells, increases intracellular and secreted steroid/androgen levels in LNCaPs to levels sufficient to stimulate the AR, and upregulated de novo steroidogenesis in LNCaPs and VCaPs. As well, inhibition of INSR and insulin-like growth factor 1 receptor (IGF1R), which IGF2 signals through, suggests that induction of steroidogenesis may be occurring predominantly through IGF1R. In summary, this project has illuminated for the first time that insulin is likely to play a large role in cancer progression, through upregulation of the steroidogenesis and lipogenesis pathways at the mRNA and protein levels, and production levels, and demonstrates a novel role for IGF-II in CaP progression through stimulation of steroidogenesis. It has also been demonstrated that metformin and simvastatin drugs may be useful in suppressing the insulin induction of these pathways. This project affirms the pathways by which ADT- induced metabolic syndrome may exacerbate CaP progression and strongly suggests that the monitoring and modulation of the metabolic state of CaP patients could have a strong impact on their therapeutic outcomes.
Resumo:
The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight ‘twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals.
Resumo:
The insulin‑like growth factor 1 receptor (IGF1R) pathway plays an important role in the pathogenesis of non‑small cell lung cancer (NSCLC) and also provides a mechanism of resistance to targeted therapies. IGF1R is therefore an ideal therapeutic target and several inhibitors have entered clinical trials. However, thus far the response to these inhibitors has been poor, highlighting the importance of predictive biomarkers to identify patient cohorts who will benefit from these targeted agents. It is well‑documented that mutations and/or deletions in the epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain predict sensitivity of NSCLC patients to EGFR TK inhibitors. Single‑nucleotide polymorphisms (SNPs) in the IGF pathway have been associated with disease, including breast and prostate cancer. The aim of the present study was to elucidate whether the IGF1R TK domain harbours SNPs, somatic mutations or deletions in NSCLC patients and correlates the mutation status to patient clinicopathological data and prognosis. Initially 100 NSCLC patients were screened for mutations/deletions in the IGF1R TK domain (exons 16‑21) by sequencing analysis. Following the identification of SNP rs2229765, a further 98 NSCLC patients and 866 healthy disease‑free control patients were genotyped using an SNP assay. The synonymous SNP (rs2229765) was the only aberrant base change identified in the IGF1R TK domain of 100 NSCLC patients initially analysed. SNP rs2229765 was detected in exon 16 and was found to have no significant association between IGF1R expression and survival. The GA genotype was identified in 53.5 and 49.4% of NSCLC patients and control individuals, respectively. No significant difference was found in the genotype (P=0.5487) or allele (P=0.9082) frequencies between the case and control group. The present findings indicate that in contrast to the EGFR TK domain, the IGF1R TK domain is not frequently mutated in NSCLC patients. The synonymous SNP (rs2229765) had no significant association between IGF1R expression and survival in the cohort of NSCLC patients.
Resumo:
Background: Insulin like growth factor binding proteins modulate the mitogenic and pro survival effects of IGF. Elevated expression of IGFBP2 is associated with progression of tumors that include prostate, ovarian, glioma among others. Though implicated in the progression of breast cancer, the molecular mechanisms involved in IGFBP2 actions are not well defined. This study investigates the molecular targets and biological pathways targeted by IGFBP2 in breast cancer. Methods: Transcriptome analysis of breast tumor cells (BT474) with stable knockdown of IGFBP2 and breast tumors having differential expression of IGFBP2 by immunohistochemistry was performed using microarray. Differential gene expression was established using R-Bioconductor package. For validation, gene expression was determined by qPCR. Inhibitors of IGF1R and integrin pathway were utilized to study the mechanism of regulation of beta-catenin. Immunohistochemical and immunocytochemical staining was performed on breast tumors and experimental cells, respectively for beta-catenin and IGFBP2 expression. Results: Knockdown of IGFBP2 resulted in differential expression of 2067 up regulated and 2002 down regulated genes in breast cancer cells. Down regulated genes principally belong to cell cycle, DNA replication, repair, p53 signaling, oxidative phosphorylation, Wnt signaling. Whole genome expression analysis of breast tumors with or without IGFBP2 expression indicated changes in genes belonging to Focal adhesion, Map kinase and Wnt signaling pathways. Interestingly, IGFBP2 knockdown clones showed reduced expression of beta-catenin compared to control cells which was restored upon IGFBP2 re-expression. The regulation of beta-catenin by IGFBP2 was found to be IGF1R and integrin pathway dependent. Furthermore, IGFBP2 and beta-catenin are co-ordinately overexpressed in breast tumors and correlate with lymph node metastasis. Conclusion: This study highlights regulation of beta-catenin by IGFBP2 in breast cancer cells and most importantly, combined expression of IGFBP2 and beta-catenin is associated with lymph node metastasis of breast tumors.
Resumo:
随着人口老龄化的发展,对衰老和长寿的研究越来越受到关注。科学家们希望找到衰老相关疾病的致病机理以及治疗手段,从而降低这些疾病的发病风险,减少社会和经济负担。长寿老人受衰老相关疾病的困扰相对较少,自然成为研究的热点人群。而由于长寿的遗传力相对较高,关于长寿的遗传学研究也成为这个领域的热点之一。作为在从无脊椎动物到脊椎动物中一条非常保守的信号通路,胰岛素/胰岛素样生长因子1(IIS)信号通路是一条与生长发育代谢密切相关的信号通路。同时,在模式生物的研究中发现,减弱这条信号通路会导致模式生物寿命的延长。而在人类群体的相关性研究中,这条通路上一些基因的遗传变异位点与长寿、血清胰岛素样生长因子1(IGF1)水平以及一些衰老相关疾病如糖尿病、癌症和心脑血管疾病相关。为了探讨IIS信号通路上一些基因的遗传变异与长寿的关系,本研究在中国四川省都江堰市招募了共493名无相互关系的长寿老人,其中男性252人,年龄均大于90岁,女性241人,年龄均大于94岁。同时,在该地区招募了442名年轻的对照个体,年龄在22岁到73岁之间。我们对IIS信号通路上的一些基因的遗传变异位点利用测序,片段分析,RFLP等方法进行了扫描。包括(1)IGF1基因启动子区域及内含子1中的一个微卫星位点;(2)IGF1R基因外显子序列中的4个变异位点,包括3个SNP和一个2碱基缺失位点;(3)FOXO3A基因内含子1中的3个SNP位点。本研究发现,在该人群中,IGF1基因启动子区域的遗传变异与长寿没有相关性,但携带该区域中的微卫星位点18/21基因型的男性个体在长寿群体中所占比例高于在对照群体中所占的比例(11.11 vs. 5.45%, p=0.011)。虽然经过多重检验校正后显著性消失了,但考虑到这个位点曾被报道与多种衰老相关疾病相关,因此,这个位点不是影响长寿的潜在功能位点,但有可能与真正的潜在功能位点相连锁,这一观点有待进一步研究的验证。本研究并没有发现IGF1R基因外显子序列中的遗传变异与长寿存在相关性。同时,研究结果支持FOXO3A基因的遗传变异与长寿相关,这样,继日籍美国人,德国人,意大利人群体后,在中国汉族人群中也证实了这一结果。同时,在FOXO3A基因上的一个未报道过的单核苷酸多态性(SNP)位点(109080595)在本研究中被发现,携带这个基因突变纯和基因型的个体仅在长寿人群中出现(8/492 vs. 0/414, 基因型分布差异p值为0.011)。关于FOXO3A基因的功能以及新发现位点在其他群体中的基因型分布情况值得进一步深入研究。综上所述,本研究第一次在中国汉族人群中对IIS信号通路的一些基因的遗传变异与长寿的相关性进行了探讨,更多群体及更大样本量的研究有助于加深对长寿遗传机制的认识。
Resumo:
AIMS: Adult granulosa cell tumours (AGCTs) are uncommon ovarian sex cord-stromal tumours which recur following surgical removal in up to 50% of patients. Treatment options for recurrent and advanced stage AGCTs are limited, with poor response to chemotherapy and radiotherapy. We aimed to assess epidermal growth factor receptor (EGFR), HER2 and insulin-like growth factor-1 receptor (IGF-1R) status in AGCTs with a view to investigating whether or not these receptors might be potential therapeutic targets in these neoplasms.
METHODS AND RESULTS: Immunohistochemical staining for EGFR, HER2 and IGF-1R was undertaken in 31 AGCTs. Tumour DNA was also analysed for mutations in the tyrosine kinase domain of EGFR (exons 18-21) by Cobas mutation RT-PCR. Twenty-three of 31 (74%) AGCTs showed some degree of EGFR expression, generally with cytoplasmic or mixed membranous and cytoplasmic staining of variable intensity. Eleven of 27 (41%) cases exhibited strong membranous and cytoplasmic expression of IGF-1R. HER2 expression was not seen. No mutations were found in exons 18-21 of the EGFR gene in hot-spots of therapeutic relevance.
CONCLUSIONS: This study raises the possibility that anti-EGFR and/or anti-IGF-1R therapies may be of potential benefit in ovarian AGCTs, and this requires further study. Lack of known mutations within the tyrosine kinase domain of EGFR suggests that EGFR-related tyrosine kinase inhibitors may not be useful therapeutically.
Resumo:
Breast cancer remains a frequent cause of female cancer death despite the great strides in elucidation of biological subtypes and their reported clinical and prognostic significance. We have defined a general cohort of breast cancers in terms of putative actionable targets, involving growth and proliferative factors, the cell cycle, and apoptotic pathways, both as single biomarkers across a general cohort and within intrinsic molecular subtypes.
We identified 293 patients treated with adjuvant chemotherapy. Additional hormonal therapy and trastuzumab was administered depending on hormonal and HER2 status respectively. We performed immunohistochemistry for ER, PR, HER2, MM1, CK5/6, p53, TOP2A, EGFR, IGF1R, PTEN, p-mTOR and e-cadherin. The cohort was classified into luminal (62%) and non-luminal (38%) tumors as well as luminal A (27%), luminal B HER2 negative (22%) and positive (12%), HER2 enriched (14%) and triple negative (25%). Patients with luminal tumors and co-overexpression of TOP2A or IGF1R loss displayed worse overall survival (p=0.0251 and p=0.0008 respectively). Non-luminal tumors had much greater heterogeneous expression profiles with no individual markers of prognostic significance. Non-luminal tumors were characterised by EGFR and TOP2A overexpression, IGF1R, PTEN and p-mTOR negativity and extreme p53 expression.
Our results indicate that only a minority of intrinsic subtype tumors purely express single novel actionable targets. This lack of pure biomarker expression is particular prevalent in the triple negative subgroup and may allude to the mechanism of targeted therapy inaction and myriad disappointing trial results. Utilising a combinatorial biomarker approach may enhance studies of targeted therapies providing additional information during design and patient selection while also helping decipher negative trial results.
Resumo:
BACKGROUND: The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development.
METHODS: Ovaries from CD1 mice were cultured in alginate hydrogels in the presence or absence of 5 μg/ml insulin or IGF-I, as well as small molecule inhibitors of IR/IGF1R, PI 3-kinase signaling, or MAPK signaling. Tissues were analyzed by immunohistochemistry for expression of cytokeratin 8 to mark the ovarian surface epithelium, Müllerian inhibiting substance to mark secondary follicles, and BrdU incorporation to assess proliferation. Changes in gene expression in the ovarian surface epithelium in response to insulin or IGF-I were analyzed by transcription array. Extracellular matrix organization was evaluated by expression and localization of collagen IV.
RESULTS: Culture of ovarian organoids with insulin or IGF-I resulted in formation of hyperplastic OSE approximately 4-6 cell layers thick with a high rate of proliferation, as well as decreased MIS expression in secondary follicles. Inhibition of the MAPK pathway restored MIS expression reduced by insulin but only partially restored normal OSE growth and morphology. Inhibition of the PI 3-kinase pathway restored MIS expression reduced by IGF-I and restored OSE growth to a single cell layer. Insulin and IGF-I altered organization of collagen IV, which was restored by inhibition of PI 3-kinase signaling.
CONCLUSIONS: While insulin and IGF are often required for propagation of primary cells, these cytokines may act as potent mitogens to disrupt cell growth, resulting in formation of hyperplastic OSE and decreased follicular integrity as measured by MIS expression and collagen deposition. This may be due partly to altered collagen IV deposition and organization in the ovary in response to insulin and IGF signaling mediated by PI 3-kinase.
Resumo:
Le récepteur V2 (V2R) de la vasopressine est un récepteur couplé aux protéines G (RCPG), jouant un rôle fondamental dans le maintien de l’homéostasie hydrosodique. À l’instar de nombreux RCPGs, il est capable d’interagir avec plusieurs types de protéines G hétérotrimériques et possède des voies de signalisation peu explorées aux mécanismes mal compris. Ces voies non canoniques font l’objet des travaux exposés dans ce mémoire. Il s’agit d’explorer les caractéristiques et mécanismes de la signalisation de V2R via G12, et de la voie d’activation d’ERK 1/2 par transactivation du récepteur de l’insulin-like growth factor 1, IGF1R. Par des études de transfert d’énergie de résonance de bioluminescence (BRET), nous exposons la capacité de V2R à interagir avec la sous-unité Gα12 ainsi que la modulation de la conformation de l’hétérotrimère G12 par l’agoniste de V2R, l’arginine-vasopressine. Ces travaux dévoilent également la modulation de l’interaction entre Gα12 et son effecteur classique RhoA, suggérant un engagement de RhoA, ainsi que la potentialisation via Gα12 de la production d’AMP cyclique. À l’aide de diverses méthodes d’inhibition sélective, nos résultats précisent les mécanismes de la transactivation. Ils supportent notamment le rôle initiateur de l’activation de Src par V2R et l’absence d’implication des ligands connus d’IGF1R dans la transactivation. La métalloprotéase MMP 3 apparaît par ailleurs comme un bon candidat pour réguler la transactivation. Ce projet met en lumière des modes de signalisation peu explorés de V2R, dont l’implication physiologique et physiopathologique pourrait s’avérer significative, au-delà d’un apport fondamental dans la compréhension de la signalisation des RCPGs.
Resumo:
Background: MCF-7, T-47-D, ZR-75-1 human breast cancer cell lines are dependent on oestrogen for growth but can adapt to grow during long-term oestrogen deprivation. This serves as a model for identification of therapeutic targets in endocrine-resistant breast cancer. Methods: An overlooked complication of this model is that it involves more than non-addition of oestrogen, and inadequate attention has been given to separating molecular events associated with each of the culture manipulations. Results: Insulin and oestradiol were shown to protect MCF-7 cells against upregulation of basal growth, demonstrating a crosstalk in the growth adaptation process. Increased phosphorylation of p44/42MAPK and c-Raf reflected removal of insulin from the medium and proliferation of all three cell lines was inhibited to a lesser extent by PD98059 and U0126 following long-term oestrogen/insulin withdrawal, demonstrating a reduced dependence on the MAPK pathway. By contrast, long-term oestrogen/insulin deprivation did not alter levels of phosphorylated Akt and did not alter the dose-response of growth inhibition with LY294002 in any of the three cell lines. The IGF1R inhibitor picropodophyllin inhibited growth of all MCF-7 cells but only in the long-term oestrogen/insulin-deprived cells was this paralleled by reduction in phosphorylated p70S6K, a downstream target of mTOR. Long-term oestrogen/insulin-deprived MCF-7 cells had higher levels of phosphorylated p70S6K and developed increased sensitivity to growth inhibition by rapamycin. Conclusions: The greater sensitivity to growth inhibition by rapamycin in all three cell lines following long-term oestrogen/insulin deprivation suggests rapamycin-based therapies might be more effective in breast cancers with acquired oestrogen resistance. Keywords Akt, breast cancer cells, endocrine resistance, insulin, MAPK, MCF-7 cells, mTOR, oestrogen, oestrogen-deprived, PI3K, picropodophyllin, rapamycin, T-47-D cells, ZR-75-1 cells
Resumo:
Growth hormone (GH), insulin-like growth factors 1 and 2 (IGF1 and IGF2) and their associated binding proteins and transmembrane receptors (GHR, IGF1R and IGF2R) play an important role in the physiology of mammalian growth. The objectives of the present study were to estimate the allele and genotype frequencies of microsatellite markers located in the 5'-regulatory region of the IGF1 and GHR genes in beef cattle belonging to different genetic groups and to determine effects of these markers on growth and carcass traits in these animals under an intensive production system. For this purpose, genotyping was performed on 384 bulls including 79 Nellore, 30 Canchim (5/8 Charolais + 3/8 Zebu) and 275 crossbred animals originating from crosses of Simmental (1/2 Simmental, n = 30) and Angus (1/2 Angus, n = 245) sires with Nellore females. The effects of substituting L allele for S allele of GHR microsatellite across Nellore, Canchim and 1/2 Angus were significant for weight gain and body weight (P < 0.05). The IGF1 microsatellite allele substitutions of 229 for 225 within Nellore group and of 225 for 229 within 1/2 Angus were not significant for any of the traits.