10 resultados para IDH2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the isocitrate dehydrogenase family genes 1 or 2 (IDH1/2) have been discovered by high through put sequencing approaches inglioma and acute myeloid leukemia (AML) and related myeloproliferativeneoplasms. In both diseases, the discovery of IDH mutations has identifieda prognostically new subtype with distinct pathogenetic evolution. Ingliomas mutations are mostly found in IDH1 (>90%). They are infrequent inprimary glioblastoma (GBM) (<10%), but common in secondary GBM thatevolve from lower grade glioma (60−90%). Mutations in IDH1 precede p53mutations or 1p/19q co-deletions in sporadic low grade glioma, hence arean early evant. Co-deletions of 1p/19q, characteristic for oligodenroglioma,are highly associated with IDH1/2 mutations, while they are mutuallyexclusive with EGFR amplifications, a hall mark of primary GBM. IDH1 or 2mutations are associated with younger patient age, but absent in childhoodgliomas, and have a better prognosis that seems to be consistent in gradeII through IV gliomas. In myeloid malignancies mutations are more likelyin IDH2 and are found in de novo and secondary AML (12−18%) andpre-leukemic clonal malignancies (5% chronic; 20% transformed). IDH1/2mutations are strongly associated with NPM1 mutations that are found in30% of novo cytogenetically normal AML. In CN-AML with mutated NPM1,without FLT3 internal tandem duplication (ITD) IDH mutations constitutean adverse prognostic factor. Mutations in the metabolic enzymes IDH1 or2 result in a neomorphic reaction, generating high levels of the metabolite2-hydroxyglutarate (2-HG). IDH mutations are mutually exclusive with TET2mutations in myeloid malignancies that led to the discovery that high levelsof 2-HG inhibit the a-KG dependent dioxygenase TET2. TET2 is involved inepigenetic regulation and mediates demethylation of DNA. This mechanismis in accordance with the association of a methylator phenotype with loss offunction of TET2 by mutation or indirectly by mutation of IDH1/2 in myeloidmalignancies and gliomas, respectively.Metabolism meets Epigenetics. These discoveries will have importantclinical implications: IDH1/2 mutants may serve as unique targets fortherapy. Further, the high concentrations of the onco-metabolite 2-HGgenerated by IDH1/2 mutants, may serve as biomarker in the serum ofpatients with myeloid malignancies and may be amenable by magneticresonance spectroscopy in glioma patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) occur in most grade 2 and 3 gliomas, secondary glioblastomas, and a subset of acute myelogenous leukemias but have not been detected in other tumor types. The mutations occur at specific arginine residues and result in the acquisition of a novel enzymatic activity that converts 2-oxoglutarate to D-2-hydroxyglutarate. This study reports IDH1 and IDH2 genotyping results from a set of lymphomas, which included a large set of peripheral T-cell lymphomas. IDH2 mutations were identified in approximately 20% of angioimmunoblastic T-cell lymphomas (AITLs), but not in other peripheral T-cell lymphoma entities. These results were confirmed in an independent set of AITL patients, where the IDH2 mutation rate was approximately 45%. This is the second common genetic lesion identified in AITL after TET2 and extends the number of neoplastic diseases where IDH1 and IDH2 mutations may play a role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary brain tumours are heterogeneous in histology, genetics, and outcome. Although WHO's classification of tumours of the CNS has greatly helped to standardise diagnostic criteria worldwide, it does not consider the substantial progress that has been made in the molecular classification of many brain tumours. Recent practice-changing clinical trials have defined a role for routine assessment of MGMT promoter methylation in glioblastomas in elderly people, and 1p and 19q codeletions in anaplastic oligodendroglial tumours. Moreover, large-scale molecular profiling approaches have identified new mutations in gliomas, affecting IDH1, IDH2, H3F3, ATRX, and CIC, which has allowed subclassification of gliomas into distinct molecular subgroups with characteristic features of age, localisation, and outcome. However, these molecular approaches cannot yet predict patients' benefit from therapeutic interventions. Similarly, transcriptome-based classification of medulloblastoma has delineated four variants that might now be candidate diseases in which to explore novel targeted agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las neoplasias mieloproliferativas (NM) son un grupo de enfermedades clonales de la célula hematopoyética madre. Entre las NM clásicas se encuentran la policitemia vera (PV), la trombocitemia esencial (TE) y la mielofibrosis primaria (MFP). Durante muchos años el diagnóstico de estas patologías se hacía por exclusión utilizando biomarcadores de clonalidad poco específicos. En el año 2005, la descripción de la mutación JAK2V617F supuso un avance importante en el diagnóstico de estas patologías. Posteriormente, se han descrito mutaciones en otros genes como mutaciones en MPL, TET2, ASXL1, IDH1, IDH2, c-CBL, EZH2, IKZF1 y LNK, en distintas neoplasias mieloides y en porcentaje variable. Aun así, ninguno de estos genes son marcadores específicos de ninguna NM y todavía existe un porcentaje elevado de pacientes con TE y MFP sin un marcador de clonalidad conocido. Además, todos estos genes se han descrito como eventos genéticos implicados en la transformación de una NM a leucemia mieloide aguda. El objetivo de este proyecto fue estudiar varios marcadores moleculares en neoplasias mieloproliferativas Philadelphia negativas. En primer lugar, se estudió la modulación de la carga alélica JAK2V617F en pacientes con PV o TE que recibieron tratamiento citoreductor y a su vez se analizó la dinámica natural de la carga alélica en pacientes que no recibieron tratamiento. Posteriormente, se analizaron la presencia de alteraciones en los genes previamente mencionados, en distintos grupos de pacientes. En primer lugar, se analizó la presencia de mutaciones en TET2, ASXL1, IDH1, IDH2 y CBL en un grupo de pacientes JAK2 y MPL negativos, para determinar la frecuencia de alteraciones de estos genes en este grupo de pacientes y determinar su valor en el diagnóstico de estas patologías. En segundo lugar, se estudió la presencia de mutaciones en estos genes incluyendo EZH2, IKZF1 y LNK para estudiar la incidencia y el valor pronóstico de estas alteraciones en las NM que progresan a mielofibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peripheral T-cell lymphoma (PTCL) encompasses a heterogeneous group of neoplasms with generally poor clinical outcome. Currently 50% of PTCL cases are not classifiable: PTCL-not otherwise specified (NOS). Gene-expression profiles on 372 PTCL cases were analyzed and robust molecular classifiers and oncogenic pathways that reflect the pathobiology of tumor cells and their microenvironment were identified for major PTCL-entities, including 114 angioimmunoblastic T-cell lymphoma (AITL), 31 anaplastic lymphoma kinase (ALK)-positive and 48 ALK-negative anaplastic large cell lymphoma, 14 adult T-cell leukemia/lymphoma and 44 extranodal NK/T-cell lymphoma that were further separated into NK-cell and gdT-cell lymphomas. Thirty-seven percent of morphologically diagnosed PTCL-NOS cases were reclassified into other specific subtypes by molecular signatures. Reexamination, immunohistochemistry, and IDH2 mutation analysis in reclassified cases supported the validity of the reclassification. Two major molecular subgroups can be identified in the remaining PTCL-NOS cases characterized by high expression of either GATA3 (33%; 40/121) or TBX21 (49%; 59/121). The GATA3 subgroup was significantly associated with poor overall survival (P = .01). High expression of cytotoxic gene-signature within the TBX21 subgroup also showed poor clinical outcome (P = .05). In AITL, high expression of several signatures associated with the tumor microenvironment was significantly associated with outcome. A combined prognostic score was predictive of survival in an independent cohort (P = .004).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Une des caractéristiques principales des cellules cancéreuses est la reprogrammation de leur métabolisme énergétique. Des mutations d’enzymes impliquées dans différentes voies métaboliques sont récurrentes chez plusieurs tumeurs, contribuant ainsi à la dérégulation de ces cellules et à l’oncogénèse. C’est le cas de l’isocitrate déshydrogénase 1 (IDH1) et 2 (IDH2), responsables de la conversion de l’isocitrate en α-kétoglutarate dans le cycle de l’acide citrique. Ces enzymes sont fréquemment mutées chez les gliomes, acquérant ainsi la capacité de convertir l’α-kétoglutarate en 2-hydroxyglutarate (2HG), un oncométabolite inhibant les oxygénases α-kétoglutarate dépendantes parmi lesquelles figure notamment KDM4A, une déméthylase de lysines. À la recherche de nouvelles voies oncogéniques potentiellement régulées par les formes mutées de IDH1/2, nous avons initialement observé que les mutations de ces deux enzymes et de PTEN, un régulateur négatif de la voie mTOR, étaient mutuellement exclusives chez les gliomes. Ceci suggère que les mutations de IDH1/2 reproduiraient certains effets engendrés par les mutations de PTEN, créant ainsi un environnement oncogénique similaire. Nous avons observé que les formes mutées de IDH1/2 stimulent l’activation de mTOR grâce à la production et l’accumulation de 2HG. Cette activation repose en partie sur l’inhibition de KDM4A par cet oncométabolite. KDM4A est impliqué dans la stabilisation de DEPTOR, un inhibiteur de mTOR. Ainsi, l’inhibition de KDM4A par le 2HG entraîne la déstabilisation de DEPTOR et, par conséquent, l’activation de mTOR. Nos travaux ont donc permis l’identification d’un nouveau mécanisme oncogénique régulé par les formes mutées de IDH1/2 retrouvées chez les gliomes, soit l’activation de mTOR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the critical chromatin modifier ATRX and mutations in CIC and FUBP1, which are potent regulators of cell growth, have been discovered in specific subtypes of gliomas, the most common type of primary malignant brain tumors. However, the frequency of these mutations in many subtypes of gliomas, and their association with clinical features of the patients, is poorly understood. Here we analyzed these loci in 363 brain tumors. ATRX is frequently mutated in grade II-III astrocytomas (71%), oligoastrocytomas (68%), and secondary glioblastomas (57%), and ATRX mutations are associated with IDH1 mutations and with an alternative lengthening of telomeres phenotype. CIC and FUBP1 mutations occurred frequently in oligodendrogliomas (46% and 24%, respectively) but rarely in astrocytomas or oligoastrocytomas (<10%). This analysis allowed us to define two highly recurrent genetic signatures in gliomas: IDH1/ATRX (I-A) and IDH1/CIC/FUBP1 (I-CF). Patients with I-CF gliomas had a significantly longer median overall survival (96 months) than patients with I-A gliomas (51 months) and patients with gliomas that did not harbor either signature (13 months). The genetic signatures distinguished clinically distinct groups of oligoastrocytoma patients, which usually present a diagnostic challenge, and were associated with differences in clinical outcome even among individual tumor types. In addition to providing new clues about the genetic alterations underlying gliomas, the results have immediate clinical implications, providing a tripartite genetic signature that can serve as a useful adjunct to conventional glioma classification that may aid in prognosis, treatment selection, and therapeutic trial design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Krebs cycle is of fundamental importance for the generation of the energetic and molecular needs of both prokaryotic and eukaryotic cells. Both enantiomers of metabolite 2-hydroxyglutarate are directly linked to this pivotal biochemical pathway and are found elevated not only in several cancers, but also in different variants of the neurometabolic disease 2-hydroxyglutaric aciduria. Recently we showed that cancer-associated IDH2 germline mutations cause one variant of 2-hydroxyglutaric aciduria. Complementary to these findings, we now report recessive mutations in SLC25A1, the mitochondrial citrate carrier, in 12 out of 12 individuals with combined D-2- and L-2-hydroxyglutaric aciduria. Impaired mitochondrial citrate efflux, demonstrated by stable isotope labeling experiments and the absence of SLC25A1 in fibroblasts harboring certain mutations, suggest that SLC25A1 deficiency is pathogenic. Our results identify defects in SLC25A1 as a cause of combined D-2- and L-2-hydroxyglutaric aciduria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Low-grade gliomas (LGGs) are rare brain neoplasms, with survival spanning up to a few decades. Thus, accurate evaluations on how biomarkers impact survival among patients with LGG require long-term studies on samples prospectively collected over a long period. METHODS The 210 adult LGGs collected in our databank were screened for IDH1 and IDH2 mutations (IDHmut), MGMT gene promoter methylation (MGMTmet), 1p/19q loss of heterozygosity (1p19qloh), and nuclear TP53 immunopositivity (TP53pos). Multivariate survival analyses with multiple imputation of missing data were performed using either histopathology or molecular markers. Both models were compared using Akaike's information criterion (AIC). The molecular model was reduced by stepwise model selection to filter out the most critical predictors. A third model was generated to assess for various marker combinations. RESULTS Molecular parameters were better survival predictors than histology (ΔAIC = 12.5, P< .001). Forty-five percent of studied patients died. MGMTmet was positively associated with IDHmut (P< .001). In the molecular model with marker combinations, IDHmut/MGMTmet combined status had a favorable impact on overall survival, compared with IDHwt (hazard ratio [HR] = 0.33, P< .01), and even more so the triple combination, IDHmut/MGMTmet/1p19qloh (HR = 0.18, P< .001). Furthermore, IDHmut/MGMTmet/TP53pos triple combination was a significant risk factor for malignant transformation (HR = 2.75, P< .05). CONCLUSION By integrating networks of activated molecular glioma pathways, the model based on genotype better predicts prognosis than histology and, therefore, provides a more reliable tool for standardizing future treatment strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer cells have been noted to have an altered metabolic phenotype for over ninety years. In the presence of oxygen, differentiated cells predominately utilise the tricarboxylic acid (TCA) cycle and oxidative phosphorylation to efficiently produce energy and the metabolites necessary for protein and lipid synthesis. However, in hypoxia, this process is altered and cells switch to a higher rate of glycolysis and lactate production to maintain their energy and metabolic needs. In cancer cells, glycolysis is maintained at a high rate, even in the presence of oxygen; a term described as “aerobic glycolysis”. Tumour cells are rapidly dividing and have a much greater need for anabolism compared to normal differentiated cells. Rapid glucose metabolism enables faster ATP production as well as a greater redistribution of carbons to nucleotide, protein, and fatty acid synthesis, thus maximising cell growth. Recently, other metabolic changes, driven by mutations in genes related to the TCA cycle, indicate an alternative role for metabolism in cancer, the “oncometabolite”. This is where a particular metabolite builds up within the cell and contributes to the tumorigenic process. One of these genes is isocitrate dehydrogenase (IDH) IDH is an enzyme that forms part of the tricarboxylic acid (TCA) cycle and converts isocitrate to α-ketoglutarate (α-KG). It exists in three isoforms; IDH1, IDH2 and IDH3 with the former present in the cytoplasm and the latter two in the mitochondria. Point mutations have been identified in the IDH1 and IDH2 genes in glioma which result in a gain of function by converting α-KG to 2-hydroxyglutarate (2HG), an oncometabolite. 2HG acts as a competitive inhibitor of the α-KG dependent dioxygenases, a superfamily of enzymes that are involved in numerous cellular processes such as DNA and histone demethylation. It was hypothesised that the IDH1 mutation would result in other metabolic changes in the cell other than 2HG production, and could potentially identify pathways which could be targeted for therapeutic treatment. In addition, 2HG can act as a potential competitive inhibitor of α-KG dependent dioxygenases, so it was hypothesised that there would be an effect on histone methylation. This may alter gene expression and provide a mechanism for tumourogenesis and potentially identify further therapeutic targets. Metabolic analysis of clinical tumour samples identified changes associated with the IDH1 mutation, which included a reduction in α-KG and an increase in GABA, in addition to the increase in 2HG. This was replicated in several cell models, where 13C labelled metabolomics was also used to identify a possible increase in metabolic flux from glutamate to GABA, as well as from α-KG to 2HG. This may provide a mechanism whereby the cell can bypass the IDH1 mutation as GABA can be metabolised to succinate in the mitochondria by GABA transaminase via the GABA shunt. JMJ histone demethylases are a subset of the α-KG dependent dioxygenases, and are involved in removing methyl groups from histone tails. Changes in histone methylation are associated with changes in gene expression depending on the site and extent of chemical modification. To identify whether the increase in 2HG and fall in α-KG was associated with inhibition of histone demethylases a histone methylation screen was used. The IDH1 mutation was associated with an increase in methylation of H3K4, which is associated with gene activation. ChiP and RNA sequencing identified an increase in H3K4me3 at the transcription start site of the GABRB3 subunit, resulting in an increase in gene expression. The GABRB3 subunit forms part of the GABA-A receptor, a chloride channel, which on activation can reduce cell proliferation. The IDH1 mutation was associated with an increase in GABA and GABRB3 subunit of the GABA-A receptor. This raises the possibility of GABA transaminase as a potential therapeutic target. Inhibition of this enzyme could reduce GABA metabolism, potentially reducing any beneficial effect of the GABA shunt in IDH1 mutant tumours, and increasing activation of the GABA-A receptor by increasing the concentration of GABA in the brain. This in turn may reduce cell proliferation, and could be achieved by using Vigabatrin, a GABA transaminase inhibitor licensed for use in epilepsy.