959 resultados para ICD-10
Resumo:
Background: The systematic collection of high-quality mortality data is a prerequisite in designing relevant drowning prevention programmes. This descriptive study aimed to assess the quality (i.e., level of specificity) of cause-of-death reporting using ICD-10 drowning codes across 69 countries.---------- Methods: World Health Organization (WHO) mortality data were extracted for analysis. The proportion of unintentional drowning deaths coded as unspecified at the 3-character level (ICD-10 code W74) and for which the place of occurrence was unspecified at the 4th character (.9) were calculated for each country as indicators of the quality of cause-of-death reporting.---------- Results: In 32 of the 69 countries studied, the percentage of cases of unintentional drowning coded as unspecified at the 3-character level exceeded 50%, and in 19 countries, this percentage exceeded 80%; in contrast, the percentage was lower than 10% in only 10 countries. In 21 of the 56 countries that report 4-character codes, the percentage of unintentional drowning deaths for which the place of occurrence was unspecified at the 4th character exceeded 50%, and in 15 countries, exceeded 90%; in only 14 countries was this percentage lower than 10%.---------- Conclusion: Despite the introduction of more specific subcategories for drowning in the ICD-10, many countries were found to be failing to report sufficiently specific codes in drowning mortality data submitted to the WHO.
Resumo:
The National Centre for Health Information Research & Training (formerly NCCH Brisbane) has been conducting an annual introductory ICD-10 coding program in Brisbane for seven years. In 2008, the Centre introduced a new initiative, inviting potential trainers to participate in a one week train the trainer workshop prior to the regular coder training. The new trainers are provided with the opportunity to practice their new skills with the support and assistance of the NCHIRT trainers during the subsequent introductory program. This paper will report on the results of a survey of participants of these programs about their experiences conducting training courses in their own countries. The train the trainer program as a means to create a cadre of trainers to support the implementation of ICD-11 will be explored.
Resumo:
This paper describes the limitations of using the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Australian Modification (ICD-10-AM) to characterise patient harm in hospitals. Limitations were identified during a project to use diagnoses flagged by Victorian coders as hospital-acquired to devise a classification of 144 categories of hospital acquired diagnoses (the Classification of Hospital Acquired Diagnoses or CHADx). CHADx is a comprehensive data monitoring system designed to allow hospitals to monitor their complication rates month-to-month using a standard method. Difficulties in identifying a single event from linear sequences of codes due to the absence of code linkage were the major obstacles to developing the classification. Obstetric and perinatal episodes also presented challenges in distinguishing condition onset, that is, whether conditions were present on admission or arose after formal admission to hospital. Used in the appropriate way, the CHADx allows hospitals to identify areas for future patient safety and quality initiatives. The value of timing information and code linkage should be recognised in the planning stages of any future electronic systems.
Resumo:
Objective Death certificates provide an invaluable source for cancer mortality statistics; however, this value can only be realised if accurate, quantitative data can be extracted from certificates – an aim hampered by both the volume and variable nature of certificates written in natural language. This paper proposes an automatic classification system for identifying cancer related causes of death from death certificates. Methods Detailed features, including terms, n-grams and SNOMED CT concepts were extracted from a collection of 447,336 death certificates. These features were used to train Support Vector Machine classifiers (one classifier for each cancer type). The classifiers were deployed in a cascaded architecture: the first level identified the presence of cancer (i.e., binary cancer/nocancer) and the second level identified the type of cancer (according to the ICD-10 classification system). A held-out test set was used to evaluate the effectiveness of the classifiers according to precision, recall and F-measure. In addition, detailed feature analysis was performed to reveal the characteristics of a successful cancer classification model. Results The system was highly effective at identifying cancer as the underlying cause of death (F-measure 0.94). The system was also effective at determining the type of cancer for common cancers (F-measure 0.7). Rare cancers, for which there was little training data, were difficult to classify accurately (F-measure 0.12). Factors influencing performance were the amount of training data and certain ambiguous cancers (e.g., those in the stomach region). The feature analysis revealed a combination of features were important for cancer type classification, with SNOMED CT concept and oncology specific morphology features proving the most valuable. Conclusion The system proposed in this study provides automatic identification and characterisation of cancers from large collections of free-text death certificates. This allows organisations such as Cancer Registries to monitor and report on cancer mortality in a timely and accurate manner. In addition, the methods and findings are generally applicable beyond cancer classification and to other sources of medical text besides death certificates.
Resumo:
A diagnostic system for ICD-11 is proposed which commences with broad reorganization and simplification of the current categories and the use of clinically relevant specifiers. Such changes have implications for the positioning of diagnostic groups and lead to a range of possibilities for improving terminology and the juxtaposition of individual conditions. The development of ICD-11 provides the first opportunity in almost two decades to improve the validity and reliability of the international classification system. Widespread change in broad categories and criteria cannot be justified by research that has emerged since the last revision. It would also be disruptive to clinical practice and might devalue past research work. However, the case for reorganization of the categories is stronger and has recently been made by an eminent international group of researchers (Andrews et al., 2009). A simpler, interlinked diagnostic system is proposed here which is likely to have fewer categories than its predecessor. There are major advantages of such a system for clinical practice and research and it could also produce much needed simplification for primary care (Gask et al., 2008) and the developing world (Wig, 1990; Kohn et al., 2004).
Resumo:
BACKGROUND: Pharmacy-based case mix measures are an alternative source of information to the relatively scarce outpatient diagnoses data. But most published tools use national drug nomenclatures and offer no head-to-head comparisons between drugs-related and diagnoses-based categories. The objective of the study was to test the accuracy of drugs-based morbidity groups derived from the World Health Organization Anatomical Therapeutic Chemical Classification of drugs by checking them against diagnoses-based groups. METHODS: We compared drugs-based categories with their diagnoses-based analogues using anonymous data on 108,915 individuals insured with one of four companies. They were followed throughout 2005 and 2006 and hospitalized at least once during this period. The agreement between the two approaches was measured by weighted kappa coefficients. The reproducibility of the drugs-based morbidity measure over the 2 years was assessed for all enrollees. RESULTS: Eighty percent used a drug associated with at least one of the 60 morbidity categories derived from drugs dispensation. After accounting for inpatient under-coding, fifteen conditions agreed sufficiently with their diagnoses-based counterparts to be considered alternative strategies to diagnoses. In addition, they exhibited good reproducibility and allowed prevalence estimates in accordance with national estimates. For 22 conditions, drugs-based information identified accurately a subset of the population defined by diagnoses. CONCLUSIONS: Most categories provide insurers with health status information that could be exploited for healthcare expenditure prediction or ambulatory cost control, especially when ambulatory diagnoses are not available. However, due to insufficient concordance with their diagnoses-based analogues, their use for morbidity indicators is limited.
Resumo:
Disability, employment, and employment restrictions among persons with ICD-10 anxiety disorders were investigated at a population level in comparison to persons without disability or long-term health conditions. Data were provided by the Australian Bureau of Statistics (ABS) collected in a 1998 national survey. Multistage sampling obtained a probability sample of 37,580 individuals in the household component of the survey. Trained lay interviewers using ICD-10 computer-assisted interviews identified household residents with anxiety disorders. Details of employment restrictions are reported and discussed. The four most commonly reported restrictions were: restricted in the type of job (24.0%); need for a support person (23.3%); difficulty changing jobs (18.6%); and restricted in the number of hours (15.4%). The nature and extent of employment restrictions characterizing persons with anxiety disorders indicates a need for strengthened disability and health condition screening at application for Government income support and at gateways to public funded vocational assistance. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
Focal points: ICD-10 codings and spontaneous yellow card reports for warfarin toxicity were compared retrospectively over a one-year period Eighteen cases of ICD-10 coded warfarin toxicity were identified from a total of 55,811 coded episodes More than three times as many ADRs to warfarin were found by screening ICD-10 codes as were reported spontaneously using the yellow card scheme Valuable information is being lost to regulatory authorities and as recognised reporters to the yellow card scheme, pharmacists are well placed to report these ADRs, enhancing their role in the safe and appropriate prescribing of warfarin
Resumo:
Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response.
Resumo:
Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response.
Resumo:
Background Diabetes foot complications are a leading cause of overall avoidable hospital admissions. Since 2006, the Queensland Diabetes Clinical Network has implemented programs aimed at reducing diabetes-related hospitalisation. The aim of this retrospective observational study was to determine the incidence of diabetes foot-related hospital admissions in Queensland from 2005 to 2010. Methods Data on all primary diabetes foot-related admissions in Queensland from 2005-2010 was obtained using diabetes foot-related ICD-10-AM (hospital discharge) codes. Queensland diabetes foot-related admission incidences were calculated using general population data from the Australian Bureau of Statistics. Furthermore, diabetes foot-related sub-group admissions were analysed. Chi-squared tests were used to assess changes in admissions over time. Results Overall, 24,917 diabetes foot-related admissions occurred, resulting in the use of 260,085 bed days or 1.4% of all available Queensland hospital bed days (18,352,152). The primary reasons for these admissions were foot ulcers (49.8%), cellulitis (20.7%), peripheral vascular disease (17.8%) and osteomyelitis (3.8%). The diabetes foot-related admission incidence among the general population (per 100,000) reduced by 22% (103.0 in 2005, to 80.7 in 2010, p < 0.001); bed days decreased by 18% (1,099 to 904, p < 0.001). Conclusion Diabetes foot complications appear to be the primary reason for 1.4 out of every 100 hospital beds used in Queensland. There has been a significant reduction in the incidence of diabetes foot-related admissions in Queensland between 2005 and 2010. This decrease has coincided with a corresponding decrease in amputations and the implementation of several diabetes foot clinical programs throughout Queensland.
Resumo:
Objective: To assess extent of coder agreement for external causes of injury using ICD-10-AM for injury-related hospitalisations in Australian public hospitals. Methods: A random sample of 4850 discharges from 2002 to 2004 was obtained from a stratified random sample of 50 hospitals across four states in Australia. On-site medical record reviews were conducted and external cause codes were assigned blinded to the original coded data. Code agreement levels were grouped into the following agreement categories: block level, 3-character level, 4-character level, 5th-character level, and complete code level. Results: At a broad block level, code agreement was found in over 90% of cases for most mechanisms (eg, transport, fall). Percentage disagreement was 26.0% at the 3-character level; agreement for the complete external cause code was 67.6%. For activity codes, the percentage of disagreement at the 3-character level was 7.3% and agreement for the complete activity code was 68.0%. For place of occurrence codes, the percentage of disagreement at the 4-character level was 22.0%; agreement for the complete place code was 75.4%. Conclusions: With 68% agreement for complete codes and 74% agreement for 3-character codes, as well as variability in agreement levels across different code blocks, place and activity codes, researchers need to be aware of the reliability of their specific data of interest when they wish to undertake trend analyses or case selection for specific causes of interest.