941 resultados para IA SUPERNOVAE
Resumo:
Several recently discovered peculiar Type Ia supernovae seem to demand an altogether new formation theory that might help explain the puzzling dissimilarities between them and the standard Type Ia supernovae. The most striking aspect of the observational analysis is the necessity of invoking super-Chandrasekhar white dwarfs having masses similar to 2.1-2.8 M-circle dot, M-circle dot being the mass of Sun, as their most probable progenitors. Strongly magnetized white dwarfs having super-Chandrasekhar masses have already been established as potential candidates for the progenitors of peculiar Type Ia supernovae. Owing to the Landau quantization of the underlying electron degenerate gas, theoretical results yielded the observationally inferred mass range. Here, we sketch a possible evolutionary scenario by which super-Chandrasekhar white dwarfs could be formed by accretion on to a commonly observed magnetized white dwarf, invoking the phenomenon of flux freezing. This opens multiple possible evolution scenarios ending in supernova explosions of super-Chandrasekhar white dwarfs having masses within the range stated above. We point out that our proposal has observational support, such as the recent discovery of a large number of magnetized white dwarfs by the Sloan Digital Sky Survey.
Resumo:
We explore the effect of modification to Einstein's gravity in white dwarfs for the first time in the literature, to the best of our knowledge. This leads to significantly sub- and super-Chandrasekhar limiting masses of white dwarfs, determined by a single model parameter. On the other hand, type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe, are believed to be triggered in white dwarfs having mass close to the Chandrasekhar limit. However, observations of several peculiar, under- and over-luminous SNeIa argue for exploding masses widely different from this limit. We argue that explosions of the modified gravity induced sub- and super-Chandrasekhar limiting mass white dwarfs result in under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes and, hence, serving as a missing link. Our discovery raises two fundamental questions. Is the Chandrasekhar limit unique? Is Einstein's gravity the ultimate theory for understanding astronomical phenomena? Both the answers appear to be no!
Resumo:
We establish the importance of modified Einstein's gravity (MG) in white dwarfs (WDs) for the first time in the literature. We show that MG leads to significantly sub- and super-Chandrasekhar limiting mass WDs, depending on a single model parameter. However, conventional WDs on approaching Chandrasekhar's limit are expected to trigger Type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe. Nevertheless, observations of several peculiar, under-and over-luminous SNeIa argue for the limiting mass widely different from Chandrasekhar's limit. Explosions of MG induced sub-and super-Chandrasekhar limiting mass WDs explain under-and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes. Our discovery questions both the global validity of Einstein's gravity and the uniqueness of Chandrasekhar's limit.
Resumo:
The photometric and spectroscopic properties of 26 well-observed Type Ia Supernovae (SNe Ia) were analyzed with the aim of exploring SN Ia diversity. The sample includes (Branch) normal SNe, as well as extreme events such as SN 1991T and SN 1991bg, while the truly peculiar SNe Ia, SN 2000cx and SN 2002cx, are not included in our sample. A statistical treatment reveals the existence of three different groups. The first group (FAINT) consists of faint SNe Ia similar to SN 1991bg, with low expansion velocities and rapid evolution of Si II velocity. A second group consists of normal SNe Ia, also with high temporal velocity gradient (HVG), but with brighter mean absolute magnitude =-19.3 and higher expansion velocities than the FAINT SNe. The third group includes both normal and SN 1991T-like SNe Ia: these SNe populate a narrow strip in the Si II velocity evolution plot, with a low-velocity gradient (LVG), but have absolute magnitudes similar to HVGs. While the FAINT and HVG SNe Ia together seem to define a relation between R(Si II) and ���m15(B), the LVG SNe either do not conform to that relation or define a new, looser one. The R(Si II) premaximum evolution of HVGs is strikingly different from that of LVGs. We discuss the impact of this evidence on the understanding of SN Ia diversity, in terms of explosion mechanisms, degree of ejecta mixing, and ejecta-circumstellar material interaction.
Resumo:
As part of the European Supernova Collaboration, we obtained extensive photometry and spectroscopy of the Type Ia supernova (SN Ia) SN 2002dj covering epochs from 11 d before to nearly two years after maximum. Detailed optical and near-infrared observations show that this object belongs to the class of the high-velocity gradient events as indicated by Si, S and Ca lines. The light curve shape and velocity evolution of SN 2002dj appear to be nearly identical to SN 2002bo. The only significant difference is observed in the optical to near-infrared colours and a reduced spectral ernission beyond 6500 A. For high-velocity gradient SNe Ia, we tentatively identify a faster rise to maximum, a more pronounced inflection in the V and R light curves after maximum and a brighter, slower declining late-time B light curve as common photometric properties of this class of object. They also seem to be characterized by a different colour and colour evolution with respect to 'normal' SNe Ia. The usual light Curve shape parameters do not distinguish these events. Stronger, more blueshifted absorption features of intermediate-mass elements and lower temperatures are the most prominent spectroscopic features of SNe Ia displaying high-velocity gradients. It appears that these events burn more intermediate-mass elements in the outer layers. Possible connections to the metallicity of the progenitor star are explored.
Resumo:
Evidence of high-velocity features (HVFs) such as those seen in the near-maximum spectra of some Type Ia supernovae (SNe Ia; e. g., SN 2000cx) has been searched for in the available SN Ia spectra observed earlier than 1 week before B maximum. Recent observational efforts have doubled the number of SNe Ia with very early spectra. Remarkably, all SNe Ia with early data ( seven in our Research Training Network sample and 10 from other programs) show signs of such features, to a greater or lesser degree, in Ca II IR and some also in the Si II lambda 6355 line. HVFs may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material (CSM) by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disk and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in single degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion and would suggest a deflagration as the more likely explosion mechanism. CSM interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe, the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.
Resumo:
The properties of the highest velocity ejecta of normal Type Ia supernovae (SNe Ia) are studied via models of very early optical spectra of six SNe. At epochs earlier than 1 week before maximum, SNe with a rapidly evolving Si II ?6355 line velocity (HVG) have a larger photospheric velocity than SNe with a slowly evolving Si II ?6355 line velocity (LVG). Since the two groups have comparable luminosities, the temperature at the photosphere is higher in LVG SNe. This explains the different overall spectral appearance of HVG and LVG SNe. However, the variation of the Ca II and Si II absorptions at the highest velocities (v>~20,000 km s-1) suggests that additional factors, such as asphericity or different abundances in the progenitor white dwarf, affect the outermost layers. The C II ?6578 line is marginally detected in three LVG SNe, suggesting that LVGs undergo less intense burning. The carbon mass fraction is small, only less than 0.01 near the photosphere, so that he mass of unburned C is only
Resumo:
SN 2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SN Ia), and a member of the distinct SN 2002cx-like class of SNe Ia. Its light curves are similar to the prototypical SN 2002cx, but are slightly broader and have a later rise to maximum in g. SN 2009ku is brighter (similar to 0.6 mag) than other SN 2002cx-like objects, peaking at M-V = -18.4 mag, which is still significantly fainter than typical SNe Ia. SN 2009ku, which had an ejecta velocity of similar to 2000 km s(-1) at 18 days after maximum brightness, is spectroscopically most similar to SN 2008ha, which also had extremely low-velocity ejecta. However, SN 2008ha had an exceedingly low luminosity, peaking at M-V = -14.2 mag, similar to 4 mag fainter than SN 2009ku. The contrast of high luminosity and low ejecta velocity for SN 2009ku is contrary to an emerging trend seen for the SN 2002cx class. SN 2009ku is a counterexample of a previously held belief that the class was more homogeneous than typical SNe Ia, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN 2009ku is an indication of the potential for these surveys to find rare and interesting objects.
Resumo:
We present a compilation of the geometry measures acquired using optical and IR spectroscopy and optical spectropolarimetry to probe the explosion geometry of Type Ia supernovae (SNe Ia). Polarization measurements are sensitive to asymmetries in the plane of the sky, whereas line profiles in nebular phase spectra are expected to trace asymmetries perpendicular to the plane of the sky. The combination of these two measures can overcome their respective projection effects, completely probing the structures of these events. For nine normal SNe Ia, we find that the polarization of Si II ?6355 at 5 days before maximum (p Si II ) is well correlated with its velocity evolution (\dot{v}_Si II), implying that \dot{v}_Si II is predominantly due to the asymmetry of the SNe. We find only a weak correlation between the polarization of Si II and the reported velocities (v neb) for peak emission of optical Fe II and Ni II lines in nebular spectra. Our sample is biased, with polarization measurements being only available for normal SNe that subsequently exhibited positive (i.e., redshifted) v neb. In unison these indicators are consistent with an explosion in which the outer layers are dominated by a spherical oxygen layer, mixed with an asymmetric distribution of intermediate-mass elements. The combination of spectroscopic and spectropolarimetric indicators suggests a single geometric configuration for normal SNe Ia, with some of the diversity of observed properties arising from orientation effects.
Resumo:
We present theoretical delay times and rates of thermonuclear explosions that are thought to produce Type Ia supernovae (SNe Ia), including the double-detonation sub-Chandrasekhar mass model, using the population synthesis binary evolution code startrack. If detonations of sub-Chandrasekhar mass carbon-oxygen white dwarfs following a detonation in an accumulated layer of helium on the white dwarf's surface ('double-detonation' models) are able to produce thermonuclear explosions which are characteristically similar to those of SNe Ia, then these sub-Chandrasekhar mass explosions may account for at least some substantial fraction of the observed SN Ia rate. Regardless of whether all double-detonations look like 'normal' SNe Ia, in any case the explosions are expected to be bright and thus potentially detectable. Additionally, we find that the delay time distribution of double-detonation sub-Chandrasekhar mass SNe Ia can be divided into two distinct formation channels: the 'prompt' helium-star channel with delay times
Resumo:
Motivated by recent models involving off-centre ignition of Type Ia supernova explosions, we undertake three-dimensional time-dependent radiation transport simulations to investigate the range of bolometric light-curve properties that could be observed from supernovae in which there is a lop-sided distribution of the products from nuclear burning. We consider both a grid of artificial toy models which illustrate the conceivable range of effects and a recent three-dimensional hydrodynamical explosion model. We find that observationally significant viewing angle effects are likely to arise in such supernovae and that these may have important ramifications for the interpretation of the observed diversity of Type Ia supernova and the systematic uncertainties which relate to their use as standard candles in contemporary cosmology. © 2007 RAS.
Resumo:
One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M and 1.1 M combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms in the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M of Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia. © 2012 The American Astronomical Society. All rights reserved.
Resumo:
A multidimension, time-dependent Monte Carlo code is used to compute sample ?-ray spectra to explore whether unambiguous constraints could be obtained from ?-ray observations of Type Ia supernovae. Both spherical and aspherical geometries are considered and it is shown that moderate departures from sphericity can produce viewing-angle effects that are at least as significant as those caused by the variation of key parameters in 1D models. Thus, ?-ray data could, in principle, carry some geometrical information, and caution should be applied when discussing the value of ?-ray data based only on 1D explosion models. In light of the limited sensitivity of current ?-ray observatories, the computed theoretical spectra are studied to revisit the issue of whether useful constraints could be obtained for moderately nearby objects. The most useful ?-ray measurements are likely to be of the light curve and time-dependent hardness ratios, but sensitivity higher than currently available, particularly at relatively hard energies (~2-3 MeV), is desirable. © 2008 The Authors. Journal compilation © 2008 RAS.
Resumo:
A Monte Carlo code (artis) for modelling time-dependent three-dimensional spectral synthesis in chemically inhomogeneous models of Type Ia supernova ejecta is presented. Following the propagation of ?-ray photons, emitted by the radioactive decay of the nucleosynthesis products, energy is deposited in the supernova ejecta and the radiative transfer problem is solved self-consistently, enforcing the constraint of energy conservation in the comoving frame. Assuming a photoionization-dominated plasma, the equations of ionization equilibrium are solved together with the thermal balance equation adopting an approximate treatment of excitation. Since we implement a fully general treatment of line formation, there are no free parameters to adjust. Thus, a direct comparison between synthetic spectra and light curves, calculated from hydrodynamic explosion models, and observations is feasible. The code is applied to the well-known W7 explosion model and the results tested against other studies. Finally, the effect of asymmetric ejecta on broad-band light curves and spectra is illustrated using an elliptical toy model. © 2009 RAS.
Resumo:
A three-dimensional Monte Carlo code for modelling radiation transport in Type Ia supernovae is described. In addition to tracking Monte Carlo quanta to follow the emission, scattering and deposition of radiative energy, a scheme involving volume-based Monte Carlo estimators is used to allow properties of the emergent radiation field to be extracted for specific viewing angles in a multidimensional structure. This eliminates the need to compute spectra or light curves by angular binning of emergent quanta. The code is applied to two test problems to illustrate consequences of multidimensional structure on the modelling of light curves. First, elliptical models are used to quantify how large-scale asphericity can introduce angular dependence to light curves. Secondly, a model which incorporates complex structural inhomogeneity, as predicted by modern explosion models, is used to investigate how such structure may affect light-curve properties. © 2006 RAS.