855 resultados para Hypoxic Injury


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years the use of mild therapeutic hypothermia as a means of neuroprotection has become an important concept for treatment after cerebral ischemic hypoxic injury. Mild therapeutic hypothermia has been shown to improve outcome after out-of-hospital cardiac arrest, and many studies suggest a beneficial effect of mild therapeutic hypothermia on patient outcome after traumatic brain injury, cerebrovascular damage and neonatal asphyxia. This review article explores the numerous possibilities and methods for the induction of mild therapeutic hypothermia, reviews thermoregulatory management during maintenance and discusses associated risks and complications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Aims: We have optimized the isolated perfused mouse kidney (IPMK) model for studying renal vascular and tubular function in vitro using 24-28 g C57BL6J mice; the wild type controls for many transgenic mice. Methods and Results: Buffer composition was optimized for bovine serum albumin concentration (BSA). The effect of adding erythrocytes on renal function and morphology was assessed. Autoregulation was investigated during stepped increases in perfusion pressure. Perfusion for 60 min at 90-110 mmHg with Krebs bicarbonate buffer containing 5.5% BSA, and amino acids produced functional parameters within the in vivo range. Erythrocytes increased renal vascular resistance (3.8 +/- 0.2 vs 2.4 +/- 0.1 mL/min.mmHg, P < 0.05), enhanced sodium reabsorption (FENa = 0.3 +/- 0.08 vs 1.5 +/- 0.7%, P < 0.05), produced equivalent glomerular filtration rates (GFR; 364 +/- 38 vs 400 +/- 9 muL/min per gkw) and reduced distal tubular cell injury in the inner stripe (5.8 +/- 1.7 vs 23.7 +/- 3.1%, P < 0.001) compared to cell free perfusion. The IPMK was responsive to vasoconstrictor (angiotensin II, EC50 100 pM) and vasodilator (methacholine, EC50 75 nM) mediators and showed partial autoregulation of perfusate flow under control conditions over 65-85 mmHg; autoregulatory index (ARI) of 0.66 +/- 0.11. Angiotensin II (100 pM) extended this range (to 65-120 mmHg) and enhanced efficiency (ARI 0.21 +/- 0.02, P < 0.05). Angiotensin II facilitation was antagonized by methacholine (ARI 0.76 +/- 0.08) and papaverine (ARI 0.91 +/- 0.13). Conclusion: The IPMK model is useful for studying renal physiology and pathophysiology without systemic neurohormonal influences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The standard early markers for identifying and grading HIE severity, are not sufficient to ensure all children who would benefit from treatment are identified in a timely fashion. The aim of this thesis was to explore potential early biomarkers of HIE. Methods: To achieve this a cohort of infants with perinatal depression was prospectively recruited. All infants had cord blood samples drawn and biobanked, and were assessed with standardised neurological examination, and early continuous multi-channel EEG. Cord samples from a control cohort of healthy infants were used for comparison. Biomarkers studied included; multiple inflammatory proteins using multiplex assay; the metabolomics profile using LC/MS; and the miRNA profile using microarray. Results: Eighty five infants with perinatal depression were recruited. Analysis of inflammatory proteins consisted of exploratory analysis of 37 analytes conducted in a sub-population, followed by validation of all significantly altered analytes in the remaining population. IL-6 and IL-6 differed significantly in infants with a moderate/severely abnormal vs. a normal-mildly abnormal EEG in both cohorts (Exploratory: p=0.016, p=0.005: Validation: p=0.024, p=0.039; respectively). Metabolomic analysis demonstrated a perturbation in 29 metabolites. A Cross- validated Partial Least Square Discriminant Analysis model was developed, which accurately predicted HIE with an AUC of 0.92 (95% CI: 0.84-0.97). Analysis of the miRNA profile found 70 miRNA significantly altered between moderate/severely encephalopathic infants and controls. miRNA target prediction databases identified potential targets for the altered miRNA in pathways involved in cellular metabolism, cell cycle and apoptosis, cell signaling, and the inflammatory cascade. Conclusion: This thesis has demonstrated that the recruitment of a large cohortof asphyxiated infants, with cord blood carefully biobanked, and detailed early neurophysiological and clinical assessment recorded, is feasible. Additionally the results described, provide potential alternate and novel blood based biomarkers for the identification and assessment of HIE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In reconstructive surgery, skeletal muscle may endure protracted ischemia before reperfusion, which can lead to significant ischemia/reperfusion injury. Ischemic postconditioning induced by brief cycles of reperfusion/reocclusion at the end of ischemia has been shown to salvage skeletal muscle from ischemia/reperfusion injury in several animal models. However, ischemic postconditioning has not been confirmed in human skeletal muscle. Using an established in vitro human skeletal muscle hypoxic conditioning model, we tested our hypothesis that hypoxic postconditioning salvages ex vivo human skeletal muscle from hypoxia/reoxygenation injury and the mechanism involves inhibition of opening of the mitochondrial permeability transition pore (mPTP) and preservation of ATP synthesis. Muscle strips (~0.5×0.5×15mm) from human rectus abdominis muscle biopsies were cultured in Krebs-Henseleit-HEPES buffer, bubbled with 95%N(2)/5%CO(2) (hypoxia) or 95%O(2)/5%CO(2) (reoxygenation). Samples were subjected to 3h hypoxia/2h reoxygenation. Hypoxic postconditioning was induced by one or two cycles of 5min reoxygenation/5min hypoxia after 3h hypoxia. Muscle injury, viability and ATP synthesis after 2h of reoxygenation were assessed by measuring lactate dehydrogenase (LDH) release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction and ATP content, respectively. Hypoxic postconditioning or treatment with the mPTP-opening inhibitors Cyclosporine A (CsA, 5×10(-6)M) or N-Methyl-4-isoleucine Cyclosporine (NIM811, 5×10(-6)M) 10min before reoxygenation decreased LDH release, increased MTT reduction and increased muscle ATP content (n=7 patients; P

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular responses to hypoxia restore oxygen homeostasis and promote cell survival, and are mainly regulated through the activation of the hypoxia-inducible transcription factor (HIF)-1 and its target genes. In this study we questioned whether surgically depleting the liver s arterial blood supply, by clamping the hepatic artery (HA), would be sufficient to mount a hypoxia-driven molecular response, the up-regulation of hepatoprotective genes and thereby protect the liver from subsequent damaging insults.;;The HA of normal male Balb/c mice was clamped with a micro vascular clip for 2 hours. The liver s saturated oxygen concentration (SO2) was measured using an O2C surface probe (LEA-Medizintechnik) and interstitial fluid was collected with microdialysis membranes to monitor tissue damage. Mice without clamping served as sham operated controls. Interstitial fluid was assessed for lactate pyruvate (L/P) and glycerol content and the mRNA of hepatoprotective genes was analyzed by real time PCR. Subsequently, mice received either a tail vein injection of anti-Fas antibody (Jo2, 0.2 mg/kg) or the liver was made ischemic (60min) followed by 6 hours reperfusion. Caspase 3-activity and cleaved lamin A were used to assess apoptosis. In separate groups, animal were monitored for survival.;;After 30min of clamping the HA the SO2 of the liver decreased and remained at a reduced level for up to 2 hours, without an increase in L/P ratio or glycerol release. We demonstrate the activation of a hypoxia-inducible signaling pathway by the stabilization of HIF-1 protein (Western blot) and by an increase of its target gene, Epo, mRNA. There was an up-regulation of the hepatoprotective genes IL-6, IGFBP-1, HO-1 and A20 mRNA. When subsequently injected with Jo2, animals preconditioned with HA clamping, had a significantly decreased caspase-3 activity (avg21044 vs. avg3637; p=0.001, T-test) and there were fewer positive cells for cleaved Lamin A. The survival probability (10.5 hours, n=12) of mice with HA clamping was significantly higher (3.2 hours, n=13; p=0.014, Logrank test). Likewise, survival after 60 minutes of partial hepatic ischemia and 6 hours of reperfusion was reduced from 86% in mice with pretreatment by HA clamping to 56% in sham treated controls.;;This study demonstrates that a localized hypoxic stress can be achieved by surgically removing the livers arterial blood supply. Furthermore it can stimulate a hepatoprotective response that protects the liver against Fas-mediated apoptosis and ischemia-reperfusion injury. Our findings offer an innovative approach to induce hepatoprotective genes to defend the liver against subsequent insults.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: New routes for cell transplantation into the brain need to be explored as intracerebral or intrathecal applications have a high risk to cause damage to the central nervous system. It has been hypothesized that transnasally administrated cells bypass the blood-brain barrier and migrate along the olfactory neural route into the brain and cerebrospinal fluid. Our goal is to confirm this hypothesis by transnasally administrating Wharton’s Jelly mesenchymal stem cells (WJ-MSC) and neural progenitor cells (NPC) to perinatal rats in a model of hypoxic-ischemic brain injury. STUDY DESIGN: Four-day-old Wistar rat pups, previously brain-damaged by combined hypoxic-ischemic and inflammatory insult, either received WJ-MSC or green fluorescent protein-expressing NPC: The heads of the rat pups were immobilized and 3 ml drops containing the cells (50’000 cells/ml) were placed on one nostril allowing it to be snorted. This procedure was repeated twice, alternating right to left nostril with an interval of one minute between administrations. The rat pups received a total of 600’000 cells. Animals were sacrificed 24h, 48h or 7 days after the application of the cells. Fixed brains were collected, embedded in paraffin and sectioned. RESULTS: Transplanted cells were found in the layers of the olfactory bulb (OB), the cerebral cortex, thalamus and the hippocampus. The amount of cells was highest in the OB. Animals treated with transnasally delivered stem cells showed significantly decreased gliosis compared to untreated animals. CONCLUSION: Our data show that transnasal delivery of WJ-MSC and NPC to the newborn brain after perinatal brain damage is successful. The cells not only migrate the brain, but also decrease scar formation and improve neurogenesis. Therefore, the non-invasive intranasal delivery of stem cells to the brain may be the preferred method for stem cell treatment of perinatal brain damage and should be preferred in future clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. Method Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. Results Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. Conclusion The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite advances in neonatal care, hypoxic-ischemic brain injury is still a serious clinical problem, which is responsible for many cases of perinatal mortality, cerebral palsy, motor impairment and cognitive deficits. Resveratrol, a natural polyphenol with important anti-oxidant and anti-inflammatory properties, is present in grapevines, peanuts and pomegranates. The aim of the present work was to evaluate the possible neuroprotective effect of resveratrol when administered before or immediately after a hypoxic-ischemic brain event in neonatal rats by analyzing brain damage, the mitochondrial status and long-term cognitive impairment. Our results indicate that pretreatment with resveratrol protects against brain damage, reducing infarct volume, preserving myelination and minimizing the astroglial reactive response. Moreover its neuroprotective effect was found to be long lasting, as behavioral outcomes were significantly improved at adulthood. We speculate that one of the mechanisms for this neuroprotection may be related to the maintenance of the mitochondrial inner membrane integrity and potential, and to the reduction of reactive oxygen species. Curiously, none of these protective features was observed when resveratrol was administered immediately after hypoxia-ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, increased focus has been placed on the role of intrauterine infection and inflammation in the pathogenesis of fetal brain injury leading to neurodevelopmental disorders such as cerebral palsy. At present, the mechanisms by which inflammatory processes during pregnancy cause this effect on the fetus are poorly understood. Our previous work has indicated an association between experimentally-induced intrauterine infection, increased proinflammatory cytokines, and increased white matter injury in the guinea pig fetus. In order to further elucidate the pathways by which inflammation in the maternal system or the fetal membranes leads to fetal impairment, a number of studies investigating aspects of the disease process have been performed. These studies represent a body of work encompassing novel research and results in a number of human and animal studies. Using a guinea pig model of inflammation, increased amniotic fluid proinflammatory cytokines and fetal brain injury were found after a maternal inflammatory response was initiated using endotoxin. In order to more closely monitor the fetal response to chorioamnionitis, a model using the chronically catheterized fetal ovine was carried out. This study demonstrated the adverse effects on fetal white matter after intrauterine exposure to bacterial inoculation, though the physiological parameters of the fetus were relatively stable throughout the experimental protocol, even when challenged with intermittent hypoxic episodes. The placenta is an important mediator between mother and fetus during gestation, though its role in the inflammatory process is largely undefined. Studies on the placental role in the inflammatory process were undertaken, and the limited ability of proinflammatory cytokines and endotoxin to cross the placenta are detailed herein. Neurodevelopmental disorders can be monitored in animal models in order to determine effective disease models for characterization of injury and use in therapeutic strategies. Our characterizations of postnatal behaviour in the guinea pig model using motility monitoring and spatial memory testing have shown small but significant differences in pups exposed to inflammatory processes in utero. The data presented herein contributes a breadth of knowledge to the ongoing elucidation of the pathways by which fetal brain injury occurs. Determining the pathway of damage will lead to discovery of diagnostic criteria, while determining the vulnerabilities of the developing fetus is essential in formulating therapeutic options.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For S-nitrosothiols and peroxynitrite to interfere with the activity of mitochondrial complex I, prior transition of the enzyme from its active (A) to its deactive, dormant (D) state is necessary. We now demonstrate accumulation of the D-form of complex I in human epithelial kidney cells after prolonged hypoxia. Upon reoxygenation after hypoxia there was an initial delay in the return of the respiration rate to normal. This was due to the accumulation of the D-form and its slow, substrate-dependent reconversion to the A-form. Reconversion to the A-form could be prevented by prolonged incubation with endogenously generated NO. We propose that the hypoxic transition from the A-form to the D-form of complex I may be protective, because it would act to reduce the electron burst and the formation of free radicals during reoxygenation. However, this may become an early pathophysiological event when NO-dependent formation of S-nitrosothiols or peroxynitrite structurally modifies complex I in its D-form and impedes its return to the active state. These observations provide a mechanism to account for the severe cell injury that follows hypoxia and reoxygenation when accompanied by NO generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ischemia-reperfusion (I/R) injury causes skeletal muscle infarction and ischemic preconditioning (IPC) augments ischemic tolerance in animal models. To date, this has not been demonstrated in human skeletal muscle. This study aimed to develop an in vitro model to investigate the efficacy of simulated IPC in human skeletal muscle. Human skeletal muscle strips were equilibrated in oxygenated Krebs-Henseleit-HEPES buffer (37 degrees C). Aerobic and reperfusion phases were simulated by normoxic incubation and reoxygenation, respectively. Ischemia was simulated by hypoxic incubation. Energy store, cell viability, and cellular injury were assessed using ATP, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and lactate dehydrogenase (LDH) assays, respectively. Morphological integrity was assessed using electron microscopy. Studies were designed to test stability of the preparation (n = 5-11) under normoxic incubation over 24 h; the effect of 1, 2, 3, 4, or 6 h hypoxia followed by 2 h of reoxygenation; and the protective effect of hypoxic preconditioning (HPC; 5 min of hypoxia/5 min of reoxygenation) before 3 h of hypoxia/2 h of reoxygenation. Over 24 h of normoxic incubation, muscle strips remained physiologically intact as assessed by MTT, ATP, and LDH assays. After 3 h of hypoxia/2 h of reoxygenation, MTT reduction levels declined to 50.1 +/- 5.5% (P <0.05). MTT reduction levels in HPC (82.3 +/- 10.8%) and normoxic control (81.3 +/- 10.2%) groups were similar and higher (P <0.05) than the 3 h of hypoxia/2 h of reoxygenation group (45.2 +/- 5.8%). Ultrastructural morphology was preserved in normoxic and HPC groups but not in the hypoxia/reoxygenation group. This is the first study to characterize a stable in vitro model of human skeletal muscle and to demonstrate a protective effect of HPC in human skeletal muscle against hypoxia/reoxygenation-induced injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preconditioning-induced ischemic tolerance has been documented in the newborn brain, however, the signaling mechanisms of this preconditioning require further elucidation. The aims of this study were to develop a hypoxic-preconditioning (PC) model of ischemic tolerance in the newborn piglet, which emulates important clinical similarities to human situation of birth asphyxia, and to characterize some of the molecular mechanisms shown to be implicated in PC-induced neuroprotection in rodent models. One day old piglets were subjected to PC (8% O(2)/92% N(2)) for 3 h and 24 h later were exposed to hypoxia-ischemia (HI) produced by a combination of hypoxia (5% FiO(2)) for a period of 30 min and ischemia induced by a period of hypotension (10 min of reduced mean arterial blood pressure; 70% of baseline). Neuropathologic analysis and unbiased stereology, conducted at 24 h, 3 and 7 days of recovery following HI, indicated a substantial reduction in the severity of brain damage in PC piglets compared to non-PC piglets (P<0.05). PC significantly increased the mRNA expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) and its target gene, vascular endothelial growth factor (VEGF) at 0 h, 6 h, 24 h, 3 and 7 days of recovery. Immunoblot analysis demonstrated that PC resulted in HIF-1 alpha protein stabilization and accumulation in nuclear extracts of cerebral cortex of newborn piglet brain compared to normoxic controls. Protein levels of VEGF increased in a time-dependent manner in both cortex and hippocampus following PC. Double-immunolabeling indicated that VEGF is mainly expressed in neurons, endothelial cells and astroglia. Our study demonstrates for the first time the protective efficacy of PC against hypoxic-ischemic injury in newborn piglet model, which recapitulates many pathophysiological features of asphyxiated human neonates. Furthermore, as has been shown in rodent models of preconditioning, our results suggest that PC-induced protection in neonatal piglets may involve upregulation of VEGF. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Purpose-The pattern of antenatal brain injury varies with gestational age at the time of insult. Deep brain nuclei are often injured at older gestational ages. Having previously shown postnatal hypertonia after preterm fetal rabbit hypoxia-ischemia, the objective of this study was to investigate the causal relationship between the dynamic regional pattern of brain injury on MRI and the evolution of muscle tone in the near-term rabbit fetus. Methods-Serial MRI was performed on New Zealand white rabbit fetuses to determine equipotency of fetal hypoxia-ischemia during uterine ischemia comparing 29 days gestation (E29, 92% gestation) with E22 and E25. E29 postnatal kits at 4, 24, and 72 hours after hypoxia-ischemia underwent T2- and diffusion-weighted imaging. Quantitative assessments of tone were made serially using a torque apparatus in addition to clinical assessments. Results-Based on the brain apparent diffusion coefficient, 32 minutes of uterine ischemia was selected for E29 fetuses. At E30, 58% of the survivors manifested hind limb hypotonia. By E32, 71% of the hypotonic kits developed dystonic hypertonia. Marked and persistent apparent diffusion coefficient reduction in the basal ganglia, thalamus, and brain stem was predictive of these motor deficits. Conclusions-MRI observation of deep brain injury 6 to 24 hours after near-term hypoxia-ischemia predicts dystonic hypertonia postnatally. Torque-displacement measurements indicate that motor deficits in rabbits progressed from initial hypotonia to hypertonia, similar to human cerebral palsy, but in a compressed timeframe. The presence of deep brain injury and quantitative shift from hypo-to hypertonia may identify patients at risk for developing cerebral palsy. (Stroke. 2012;43:2757-2763.)