987 resultados para Hypoxia inducible factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective-Nitro-fatty acids (NO(2)-FAs) are emerging as a new class of cell signaling mediators. Because NO(2)-FAs are found in the vascular compartment and their impact on vascularization remains unknown, we aimed to investigate the role of NO(2)-FAs in angiogenesis. Methods and Results-The effects of nitrolinoleic acid and nitrooleic acid were evaluated on migration of endothelial cell (EC) in vitro, EC sprouting ex vivo, and angiogenesis in the chorioallantoic membrane assay in vivo. At 10 mu mol/L, both NO(2)-FAs induced EC migration and the formation of sprouts and promoted angiogenesis in vivo in an NO-dependent manner. In addition, NO(2)-FAs increased intracellular NO concentration, upregulated protein expression of the hypoxia inducible factor-1 alpha (HIF-1 alpha) transcription factor by an NO-mediated mechanism, and induced expression of HIF-1 alpha target genes, such as vascular endothelial growth factor, glucose transporter-1, and adrenomedullin. Compared with typical NO donors such as spermine-NONOate and deta-NONOate, NO(2)-FAs were slightly less potent inducers of EC migration and HIF-1 alpha expression. Short hairpin RNA-mediated knockdown of HIF-1 alpha attenuated the induction of vascular endothelial growth factor mRNA expression and EC migration stimulated by NO(2)-FAs. Conclusion-Our data disclose a novel physiological role for NO(2)-FAs, indicating that these compounds induce angiogenesis in an NO-dependent mechanism via activation of HIF-1 alpha. (Arterioscler Thromb Vasc Biol. 2011;31:1360-1367.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) infection induces a state of oxidative stress by affecting mitochondrial-respiratory-chain activity. By using cell lines inducibly expressing different HCV constructs, we showed previously that viral-protein expression leads to severe impairment of mitochondrial oxidative phosphorylation and to major reliance on nonoxidative glucose metabolism. However, the bioenergetic competence of the induced cells was not compromised, indicating an efficient prosurvival adaptive response. Here, we show that HCV protein expression activates hypoxia-inducible factor 1 (HIF-1) by normoxic stabilization of its alpha subunit. In consequence, expression of HIF-controlled genes, including those coding for glycolytic enzymes, was significantly upregulated. Similar expression of HIF-controlled genes was observed in cell lines inducibly expressing subgenomic HCV constructs encoding either structural or nonstructural viral proteins. Stabilization and transcriptional activation of HIF-1alpha was confirmed in Huh-7.5 cells harboring cell culture-derived infectious HCV and in liver biopsy specimens from patients with chronic hepatitis C. The HCV-related HIF-1alpha stabilization was insensitive to antioxidant treatment. Mimicking an impairment of mitochondrial oxidative phosphorylation by treatment of inducible cell lines with oligomycin resulted in stabilization of HIF-1alpha. Similar results were obtained by treatment with pyruvate, indicating that accumulation of intermediate metabolites is sufficient to stabilize HIF-1alpha. These observations provide new insights into the pathogenesis of chronic hepatitis C and, possibly, the HCV-related development of hepatocellular carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate that reducing oxygen concentration from 21% to either 1 or 0% restored in a concentration-dependent manner the expression of MCT4 at the mRNA and protein levels in cultured astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. MCT4 expression was shown to be controlled by the transcription factor hypoxia-inducible factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced MCT4 expression in astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. This could be relevant in areas of high neuronal activity and oxygen consumption, favouring astrocytic lactate supply to neurons. Moreover, it could also play an important role for neuronal recovery after an ischemic episode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia is an essential component of tumor microenvironment. In this study, we investigated the influence of hypoxia (1% PO(2)) on CTL-mediated tumor cell lysis. We demonstrate that exposure of target tumor cells to hypoxia has an inhibitory effect on the CTL clone (Heu171)-induced autologous target cell lysis. Such inhibition correlates with hypoxia-inducible factor-1alpha (HIF-1alpha) induction but is not associated with an alteration of CTL reactivity as revealed by granzyme B polarization or morphological change. Western blot analysis indicates that although hypoxia had no effect on p53 accumulation, it induced the phosphorylation of STAT3 in tumor cells by a mechanism at least in part involving vascular endothelial growth factor secretion. We additionally show that a simultaneous nuclear translocation of HIF-1alpha and phospho-STAT3 was observed. Interestingly, gene silencing of STAT3 by small interfering RNA resulted in HIF-1alpha inhibition and a significant restoration of target cell susceptibility to CTL-induced killing under hypoxic conditions by a mechanism involving at least in part down-regulation of AKT phosphorylation. Moreover, knockdown of HIF-1alpha resulted in the restoration of target cell lysis under hypoxic conditions. This was further supported by DNA microarray analysis where STAT3 inhibition resulted in a partly reversal of the hypoxia-induced gene expression profile. The present study demonstrates that the concomitant hypoxic induction of phospho-STAT3 and HIF-1alpha are functionally linked to the alteration of non-small cell lung carcinoma target susceptibility to CTL-mediated killing. Considering the eminent functions of STAT3 and HIF-1alpha in the tumor microenvironment, their targeting may represent novel strategies for immunotherapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It improves angiogenesis and tissue perfusion in ischemic skeletal muscle. In the present study, we tested the hypothesis that ischemic postconditioning is effective for salvaging ischemic skeletal muscle resulting from limb ischemia-reperfusion injury, and that the mechanism involves expression of HIF-1α. Wistar rats were randomly divided into three groups (n=36 each): sham-operated (group S), hindlimb ischemia-reperfusion (group IR), and ischemic postconditioning (group IPO). Each group was divided into subgroups (n=6) according to reperfusion time: immediate (0 h, T0), 1 h (T1), 3 h (T3), 6 h (T6), 12 h (T12), and 24 h (T24). In the IPO group, three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were carried out before reperfusion. At all reperfusion times (T0-T24), serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities, as well as interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) concentrations, were measured in rats after they were killed. Histological and immunohistochemical methods were used to assess the skeletal muscle damage and HIF-1α expression in skeletal muscle ischemia. In groups IR and IPO, serum LDH and CK activities and TNF-α, IL-6, and IL-10 concentrations were all significantly increased compared to group S, and HIF-1α expression was up-regulated (P<0.05 or P<0.01). In group IPO, serum LDH and CK activities and TNF-α and IL-6 concentrations were significantly decreased, IL-10 concentration was increased, HlF-1α expression was down-regulated (P<0.05 or P<0.01), and the pathological changes were reduced compared to group IR. The present study suggests that ischemic postconditioning can reduce skeletal muscle damage caused by limb ischemia-reperfusion and that its mechanisms may be related to the involvement of HlF-1α in the limb ischemia-reperfusion injury-triggered inflammatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyphenol-enriched fractions from natural sources have been proposed to interfere with angiogenesis in pathological conditions. We recently reported that red propolis polyphenols (RPP) exert antiangiogenic activity. However, molecular mechanisms of this activity remain unclear. Here, we aimed at characterizing molecular mechanisms to explain the impact of RPP on endothelial cells' (EC) physiology. We used in vitro and ex and in vivo models to test the hypothesis that RPP inhibit angiogenesis by affecting hypoxia-inducible factor-1 alpha (HIF1 alpha) stabilization in EC. RPP (10 mg/L) affected angiogenesis by reducing migration and sprouting of EC, attenuated the formation of new blood vessels, and decreased the differentiation of embryonic stem cells into CD31-positive cells. Moreover, RPP (10 mg/L) inhibited hypoxia- or dimethyloxallylglycine-induced mRNA and protein expression of the crucial angiogenesis promoter vascular endothelial growth factor (VEGF) in a time-dependent mariner. Under hypoxic conditions, RPP at 10 mg/L, supplied for 1-4 h, decreased HIF1 alpha protein accumulation, which in turn attenuated VEGF gene expression. In addition, RPP reduced the HIF1 alpha protein half-life from similar to 58 min to 38 min under hypoxic conditions. The reduced HIF1 alpha protein half-life was associated with an increase in the von Hippel-Lindau (pVHL)-dependent proteasomal degradation of HIF1 alpha. RPP (10 mg/L, 4 h) downregulated Cdc42 protein expression. This caused a corresponding increase in pVHL protein levels and a subsequent degradation of HIF1 alpha. In summary, we have elucidated the underlying mechanism for the antiangiogenic action of RPP, which attenuates HIF1 alpha protein accumulation and signaling. J. Nutr. 142: 441-447, 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of androgens on angiogenesis are controversial. Hypoxia-inducible factor (HIF)-1α promotes expression of vascular endothelial growth factor (VEGF) that stimulates angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis-related organ failure is the leading cause of mortality in European intensive care units (ICU). Although the inflammatory cascade of mediators in response to infection is well known, the relationships between regional inflammation, microvascular heterogeneity, hypoxia and hypoxia-inducible gene expression, and finally, organ dysfunction, are unknown. Growing evidence suggests that not only low oxygen supply to the tissues secondary to macrovascular and microvascular alterations, but also altered cellular oxygen utilization is involved in the development of multiorgan dysfunction [1]–[3]. Microbial products and innate and adaptive dysregulated immune response to infection directly affect parenchymal cells of organs and may contribute to multiorgan dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a direct correlation between the development of the multiple organ dysfunction syndrome (MODS) and the elevated mortality associated with sepsis. The mechanisms responsible for MODS development are being studied, however, the main efforts regarding MODS evaluation have focused on oxygen delivery optimization and on the modulation of the characteristic inflammatory cascade of sepsis, all with negative results. Recent studies have shown that there is development of tissue acidosis, even when there are normal oxygen conditions and limited presence of tissue cellular necrosis or apoptosis, which would indicate that cellular energetic dysfunction may be a central element in MODS pathogenesis. Mitochondrias are the main source of cellular energy, central regulators of cell death and the main source for reactive oxygen species. Several mechanisms contribute to mitochondrial dysfunction during sepsis, that is blockage of pyruvate entry into the Krebs cycle, oxidative phosphorylation substrate use in other enzymatic complexes, enzymatic complex inhibition and membrane damage mediated by oxidative stress, and reduction in mitochondrial content. Hypoxia-inducible factor-1alpha (HIF-1alpha) is a nuclear transcription factor with a central role in the regulation of cellular oxygen homeostasis. Its induction under hypoxic conditions is associated to the expression of hundreds of genes that coordinate the optimization of cellular oxygen delivery and the cellular energy metabolism. HIF-1alpha can also be stabilized under normoxic condition during inflammation and this activation seems to be associated with a prominent pro-inflammatory profile, with lymphocytes dysfunction, and to a reduction in cellular oxygen consumption. Further studies should establish a role for HIF-1alpha as a therapeutic target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Genes encoding for some of the mitochondrial proteins are under the control of the transcriptional factor hypoxia inducible factor-1 alpha (HIF-1 alpha), which can accumulate under normoxic conditions in inflammatory states. The aim of this study was to evaluate the effects of cobalt chloride (CoCl(2), a hypoxia mimicking agent), tumour necrosis factor-alpha (TNF-alpha) and toll-like receptor (TLR) -2, -3 and -4 agonists on HIF-1 alpha accumulation, and further on HIF-1 alpha-mediated modulation of mitochondrial respiration in cultured human hepatocytes. METHODS: The human hepatoma cell line HepG2 was used in this study. Cells were treated with CoCl(2), TNF-alpha and TLR-2, -3 and -4 agonists. HIF-1 alpha was determined by Western blotting and mitochondrial respiration in stimulated cells by high-resolution respirometry. RESULTS: CoCl(2), TNF-alpha and TLR agonists induced the expression of HIF-1 alpha in a time-dependent fashion. TNF-alpha and CoCl(2), but not TLR agonists, induced a reduction in complex I-, II- and IV-dependent mitochondrial oxygen consumption. TNF-alpha-associated reduction of cellular oxygen consumption was abolished through inhibition of HIF-1 alpha activity by chetomin (CTM). Pretreatment with cyclosporine A prevented CoCl(2)-induced reduction of complex I- and II-dependent mitochondrial oxygen consumption and TNF-alpha-induced reduction of complex-I-dependent respiration, implicating the involvement of the mitochondrial permeability transition pore openings. TNF-alpha and TLR-2, -3 and -4 agonists induced the expression of vascular endothelial growth factor, which was partially abolished by the blockage of HIF-1 alpha with CTM. CONCLUSIONS: The data suggest that HIF-1 alpha modulates mitochondrial respiration during CoCl(2) and TNF-alpha stimulation, whereas it has no effect when induced with TLR-2, -3 and -4 agonists.