950 resultados para Hypoxia, stemness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waterlogging of soils is common in nature. The low availability of oxygen under these conditions leads to hypoxia of the root system impairing the development and productivity of the plant. The presence of nitrate under flooding conditions is regarded as being beneficial towards tolerance to this stress. However, it is not known how nodulated soybean plants, cultivated in the absence of nitrate and therefore not metabolically adapted to this compound, would respond to nitrate under root hypoxia in comparison with non-nodulated plants grown on nitrate. A study was conducted with (15)N labelled nitrate supplied on waterlogging for a period of 48 h using both nodulated and non-nodulated plants of different physiological ages. Enrichment of N was found in roots and leaves with incorporation of the isotope in amino acids, although to a much smaller degree under hypoxia than normoxia. This demonstrates that nitrate is taken up under hypoxic conditions and assimilated into amino acids, although to a much lesser extent than for normoxia. The similar response obtained with nodulated and non-nodulated plants indicates the rapid metabolic adaptation of nodulated plants to the presence of nitrate under hypoxia. Enrichment of N in nodules was very much weaker with a distinct enrichment pattern of amino acids (especially asparagine) suggesting that labelling arose from a tissue source external to the nodule rather than through assimilation in the nodule itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to verify the influence of chronic and acute ambient oxygen levels from egg to adult stage of the zebrafish, in vivo oxygen consumption (MO2), critical tensions of oxygen (Pcrit), heart rate (fH) and total body lactate concentration (Lc) were determined for Danio rerio (Hamilton, 1822) raised at 28 °C under normoxic (7.5 mgO2.L-1 or 80 mm.Hg-1) and hypoxic conditions (4.3 mgO2.L-1) and exposed to acute hypoxia during different developmental stages. Our findings confirmed that very early stages do not respond effectively to ambient acute hypoxia. However, after the stage corresponding to the age of 30 days, D. rerio was able to respond to acute hypoxia through effective physiological mechanisms involving aerobic and anaerobic metabolism. Such responses were more efficient for the fishes reared under hypoxia which showed that D. rerio survival capability increased during acclimation to mild hypoxia. Measurements of body mass and length showed that moderate hypoxia did not affect growth significantly until the fish reached the stage of 60 days. Moreover, a growth delay was verified for the hypoxic-reared animals. Also, the D. rerio eggs-to-larvae survival varied from 87.7 to 62.4% in animals reared under normoxia and mild hypoxia, respectively. However, the surviving animals raised under moderated hypoxia showed a better aptitude to regulate aerobic and anaerobic capacities when exposed to acute hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective-Nitro-fatty acids (NO(2)-FAs) are emerging as a new class of cell signaling mediators. Because NO(2)-FAs are found in the vascular compartment and their impact on vascularization remains unknown, we aimed to investigate the role of NO(2)-FAs in angiogenesis. Methods and Results-The effects of nitrolinoleic acid and nitrooleic acid were evaluated on migration of endothelial cell (EC) in vitro, EC sprouting ex vivo, and angiogenesis in the chorioallantoic membrane assay in vivo. At 10 mu mol/L, both NO(2)-FAs induced EC migration and the formation of sprouts and promoted angiogenesis in vivo in an NO-dependent manner. In addition, NO(2)-FAs increased intracellular NO concentration, upregulated protein expression of the hypoxia inducible factor-1 alpha (HIF-1 alpha) transcription factor by an NO-mediated mechanism, and induced expression of HIF-1 alpha target genes, such as vascular endothelial growth factor, glucose transporter-1, and adrenomedullin. Compared with typical NO donors such as spermine-NONOate and deta-NONOate, NO(2)-FAs were slightly less potent inducers of EC migration and HIF-1 alpha expression. Short hairpin RNA-mediated knockdown of HIF-1 alpha attenuated the induction of vascular endothelial growth factor mRNA expression and EC migration stimulated by NO(2)-FAs. Conclusion-Our data disclose a novel physiological role for NO(2)-FAs, indicating that these compounds induce angiogenesis in an NO-dependent mechanism via activation of HIF-1 alpha. (Arterioscler Thromb Vasc Biol. 2011;31:1360-1367.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous measurements of pulmonary blood flow (qPA), coeliacomesenteric blood flow (qCoA), dorsal aortic blood pressure (PDA), heart rate (fH) and branchial ventilation frequency (fv) were made in the Australian lungfish, /Neoceratodus forsteri, /during air breathing and aquatic hypoxia. The cho­linergic and adrenergic influences on the cardiovascular system were investigated during normoxia using pharmacological agents, and the presence of catecholamines and serotonin in different tissues was investi­gated using histochemistry. Air breathing rarely occurred during normoxia but when it did, it was always associated with increased pulmonary blood flow. The pulmonary vasculature is influenced by both a cho­linergic and adrenergic tonus whereas the coeliacomesenteric vasculature is influenced by a β-adrenergic vasodilator mechanism. No adrenergic nerve fibers could be demonstrated in /Neoceratodus /but catecholamine-containing endothelial cells were found in the atrium of the heart. In addition, serotonin-­immunoreactive cells were demonstrated in the pulmonary epithelium. The most prominent response to aquatic hypoxia was an increase in gill breathing frequency followed by an increased number of air breaths together with increased pulmonary blood flow. It is clear from the present investigation that /Neoceratodus /is able to match cardiovascular performance to meet the changes in respiration during hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of N-2 respiration on cerebral blood flow (CBF) velocity on the dorsal surface of cerebellum was examined in the estuarine crocodile, Crocodylus porosus, using epi-illumination microscopy. Twelve minutes of N-2 respiration resulted in a 126% increase in CBF velocity. N-2 respiration had no effect on blood pressure, indicating an underlying cerebral vasodilation. In addition, heart rate increased significantly. Systemic injections of aminophylline and the NO synthase (NOS) inhibitor nitro-L-arginine (L-NA) did not affect the hypoxia induced increase in CBF. We conclude that C. porosus responds to hypoxia with adenosine and nitric oxide (NO) independent cerebral vasodilation, and that this is likely to be a mechanism protecting the brain from energy deficiency during prolonged dives. (C) 1999 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many years proof that the hypoxic nature of malignant tumours can be used to selectively target anticancer drugs has been sought. Several classes of potential redox activated anticancer drugs have been developed to take advantage of the reducing environment resulting from the hypoxia. Drug complexes with redox active metal centres as carriers have been investigated, but have largely been employed with cytotoxic drugs that require release of the drug intracellularly, complicating the design of such complexes. MMP inhibitors, a new class of anticancer drug, conversely act in the extracellular environment and we have investigated inhibitor complexes with several redox active transition metals. Marimastat is an MMP inhibitor with potent in-vitro antimetastatic activity and was recently in Phase III clinical trials for a variety of cancer types. We have synthesised a Co(II1) complex of marimastat incorporating the tetradentate ligand tpa (tris(2-methylpyridyl)amine) as a carrier ligand. The complex was structurally characterised in the solid state by single crystal X-ray diffraction, the first example of a crystal structure containing marimastat. 2D COSY and NOESY NMR spectra showed that the complex exists in two isomeric forms in solution, corresponding to the cis and trans isomers yet only crystallises in one of these forms. Biological testing of the complex in mice with 4T1.2 tumours showed interesting and unexpected outcomes. Initial results of the tumour growth inhibition study showed that a significant inhibition of growth was exhibited by the complex over the free inhibitor and the control. However, the metastatic potential of both free marimastat and the complex were higher than the control indicating likely problems with the experimental protocol. Further experiments are needed to determine the potential of such complexes as hypoxia activated prodrugs but there appears at least to be some promise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: This study was designed to evaluate serum potassium level variation in a porcine model of hemorrhagic shock ( HS). Methods: Eight pigs were studied in a controlled hemorrhage model of HS. Blood withdrawal began at a 50 mL/min to 70 mL/min rate, adjusted to reach a mean arterial pressure ( MAP) level of 60 mm Hg in 10 minutes. When MAP reached 60 mm Hg, the blood withdrawal rate was adjusted to maintain a MAP decrease rate of 10 mm Hg every 2 minutes to 4 minutes. Arterial and mixed venous blood samples were collected at MAP levels of 60 mm Hg, 50 mm Hg, 40 mm Hg, 30 mm Hg, 20 mm Hg, and 10 mm Hg and analyzed for oxygen saturation, PO(2), PCO(2), potassium, lactate, bicarbonate, hemoglobin, pH, and standard base excess. Results: Significant increase in serum potassium occurred early in all animals. The rate of rise in serum potassium and its levels accompanied the hemodynamic deterioration. Hyperkalemia ( K >5 mmol/L) incidence was 12.5% at 60 mm Hg and 50 mm Hg, 62.5% at 40 mm Hg, 87.5% at 30 mm Hg, and 100% at 20 mm Hg. Strong correlations were found between potassium levels and lactate ( R = 0.82), SvO(2) ( R = 0.87), Delta pH ( R = 0.83), and Delta PCO(2) ( R = 0.82). Conclusions: Serum potassium increase accompanies the onset of HS. The rise in serum potassium was directly related to the hemodynamic deterioration of HS and strongly correlated with markers of tissue hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obstetric complications play a role in the pathophysiology of schizophrenia. However, the biological consequences during neurodevelopment until adulthood are unknown. Microarrays have been used for expression profiling in four brain regions of a rat model of neonatal hypoxia as a common factor of obstetric complications. Animals were repeatedly exposed to chronic hypoxia from postnatal (PD) day 4 through day 8 and killed at the age of 150 days. Additional groups of rats were treated with clozapine from PD 120-150. Self-spotted chips containing 340 cDNAs related to the glutamate system (""glutamate chips"") were used. The data show differential (up and down) regulations of numerous genes in frontal (FR), temporal (TE) and parietal cortex (PAR), and in caudate putamen (CPU), but evidently many more genes are upregulated in frontal and temporal cortex, whereas in parietal cortex the majority of genes are downregulated. Because of their primary presynaptic occurrence, five differentially expressed genes (CPX1, NPY, NRXN1, SNAP-25, and STX1A) have been selected for comparisons with clozapine-treated animals by qRT-PCR. Complexin 1 is upregulated in FR and TE cortex but unchanged in PAR by hypoxic treatment. Clozapine downregulates it in FR but upregulates it in PAR cortex. Similarly, syntaxin 1A was upregulated in FR, but downregulated in TE and unchanged in PAR cortex, whereas clozapine downregulated it in FR but upregulated it in PAR cortex. Hence, hypoxia alters gene expression regionally specific, which is in agreement with reports on differentially expressed presynaptic genes in schizophrenia. Chronic clozapine treatment may contribute to normalize synaptic connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway leading to sleep fragmentation and intermittent hypoxia (IH) during sleep. There is growing evidence from animal models of OSA that IH is independently associated with metabolic dysfunction, including dyslipidemia and insulin resistance. The precise mechanisms by which IH induces metabolic disturbances are not fully understood. Over the last decade, several groups of investigators developed a rodent model of IH, which emulates the oxyhemoglobin profile in human USA. In the mouse model, IH induces dyslipidemia, insulin resistance and pancreatic endocrine dysfunction, similar to those observed in human USA. Recent reports provided new insights in possible mechanisms by which IH affects lipid and glucose metabolism. IH may induce dyslipidemia by up-regulating lipid biosynthesis in the liver, increasing adipose tissue lipolysis with subsequent free fatty acid flux to the liver, and inhibiting lipoprotein clearance. IH may affect glucose metabolism by inducing sympathetic activation, increasing systemic inflammation, increasing counter-regulatory hormones and fatty acids, and causing direct pancreatic beta-cell injury. IH models of USA have improved our understanding of the metabolic impact of USA, but further studies are needed before we can translate recent basic research findings to clinical practice. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIF alpha/Sima, HIF beta/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of hypoxic areas occurs during infectious and inflammatory processes and dendritic cells (DCs) are involved in both innate and adaptive immunity in diseased tissues. Our group previously reported that macrophages exposed to hypoxia were infected with the intracellular parasite Leishmania amazonensis, but showed reduced susceptibility to the parasite. This study shows that although hypoxia did not alter human DC viability, it significantly altered phenotypic and functional characteristics. The expression of CD1a, CD80, and CD86 was significantly reduced in DCs exposed to hypoxia, whereas CD11c, CD14, CD123, CD49 and HLA-DR expression remained unaltered in DCs cultured in hypoxia or normoxia. DC secretion of IL-12p70, the bioactive interleukin-12 (IL-12), a cytokine produced in response to inflammatory mediators, was enhanced under hypoxia. In addition, phagocytic activity (Leishmania uptake) was not impaired under hypoxia, although this microenviroment induced infected DCs to reduce parasite survival, consequently controlling the infection rate. All these data support the notion that a hypoxic microenvironment promotes selective pressure on DCs to assume a phenotype characterized by pro-inflammatory and microbial activities in injured or inflamed tissues and contribute to the innate immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we evaluated the mechanisms underpinning the hypertension observed in freely moving juvenile rats submitted to chronic intermittent hypoxia (CIH). Male juvenile Wistar rats (20-21 days old) were submitted to CIH (6% O(2) for 40 s every 9 min, 8 h day(-1)) for 10 days while control rats were maintained in normoxia. Prior to CIH, baseline systolic arterial pressure (SAP), measured indirectly, was similar between groups (86 +/- 1 versus 87 +/- 1 mmHg). After exposure to CIH, SAP recorded directly was higher in the CIH (n = 28) than in the control group (n = 29; 131 +/- 3 versus 115 +/- 2 mmHg, P < 0.05). This higher SAP of CIH rats presented an augmented power of oscillatory components at low (10.05 +/- 0.91 versus 5.02 +/- 0.63 mmHg(2), P < 0.05) and high (respiratory-related) frequencies (12.42 +/- 2.46 versus 3.28 +/- 0.61 mmHg(2), P < 0.05) in comparison with control animals. In addition, rats exposed to CIH also exhibited an increased cardiac baroreflex gain (-3.11 +/- 0.08 versus -2.1 +/- 0.10 beats min(-1) mmHg(-1), P < 0.0001), associated with a shift to the right of the operating point, in comparison with control rats. Administration of hexamethonium (ganglionic blocker, i.v.), injected after losartan (angiotensin II type 1 receptor antagonist) and [beta-mercapto-beta,beta-cyclopenta-methylenepropionyl(1), O-Me-Tyr(2), Arg(8)]-vasopressin (vasopressin type 1a receptor antagonist), produced a larger depressor response in the CIH (n = 8) than in the control group (n = 9; -49 +/- 2 versus -39 +/- 2 mmHg, P < 0.05). Fifteen days after the cessation of exposure to CIH, the mean arterial pressure of CIH rats returned to normal levels. The data indicate that the sympathetic-mediated hypertension observed in conscious juvenile rats exposed to CIH is not secondary to a reduction in cardiac baroreflex gain and exhibits a higher respiratory modulation, indicating that an enhanced respiratory-sympathetic coupling seems to be the major factor contributing to hypertension in rats exposed to CIH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molkov YI, Zoccal DB, Moraes DJ, Paton JF, Machado BH, Rybak IA. Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats. J Neurophysiol 105: 3080-3091, 2011. First published April 6, 2011; doi:10.1152/jn.00070.2011.-Hypertension elicited by chronic intermittent hypoxia (CIH) is associated with elevated activity of the thoracic sympathetic nerve (tSN) that exhibits an enhanced respiratory modulation reflecting a strengthened interaction between respiratory and sympathetic networks within the brain stem. Expiration is a passive process except for special metabolic conditions such as hypercapnia, when it becomes active through phasic excitation of abdominal motor nerves (AbN) in late expiration. An increase in CO(2) evokes late-expiratory (late-E) discharges phase-locked to phrenic bursts with the frequency increasing quantally as hypercapnia increases. In rats exposed to CIH, the late-E discharges synchronized in AbN and tSN emerge in normocapnia. To elucidate the possible neural mechanisms underlying these phenomena, we extended our computational model of the brain stem respiratory network by incorporating a population of presympathetic neurons in the rostral ventrolateral medulla that received inputs from the pons, medullary respiratory compartments, and retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG). Our simulations proposed that CIH conditioning increases the CO(2) sensitivity of RTN/pFRG neurons, causing a reduction in both the CO(2) threshold for emerging the late-E activity in AbN and tSN and the hypocapnic threshold for apnea. Using the in situ rat preparation, we have confirmed that CIH-conditioned rats under normal conditions exhibit synchronized late-E discharges in AbN and tSN similar to those observed in control rats during hypercapnia. Moreover, the hypocapnic threshold for apnea was significantly lowered in CIH-conditioned rats relative to that in control rats. We conclude that CIH may sensitize central chemoreception and that this significantly contributes to the neural impetus for generation of sympathetic activity and hypertension.