373 resultados para Hyperplastic callus
Resumo:
Cecropia glaziovii is a tree with used in Brazilian popular medicine. Methods allowing the clonal propagation of this species are of great interest for superior genotype multiplication and perpetuation. For this reason, we examined the effect of different culture media and different types of explants on adventitious shoot regeneration from callus and buds of C. glaziovii. Leaves, petioles and stipules obtained from aseptically grown seedlings or from pre-sterilized plants were used to initiate cultures. Adventitious shoot regeneration was achieved when apical and axillary buds were inoculated on gelled Murashige & Skoog (MS) medium supplemented with 6-benzylaminopurine alone (BAP) (1.0, 5.0 or 10.0 mg L-1) or combined with -naphthalene acetic acid (NAA) (1.0 or 2.0 mg L-1), after 40 days of culture. Best callus production was obtained after 30 days of petioles' culture on gelled MS medium with 2,4 dichlorophenoxyacetic acid (2,4-D) (5.0 mg L-1) combined with BAP (1.0 mg L-1). Successful shoot regeneration from callus was achieved when MS medium supplemented with zeatin (ZEA) (0.1 mg L-1) alone or combined with 2,4-D (1.0 or 5.0 mg L-1) was inoculated with friable callus obtained from petioles. All shoots were rooted by inoculation on MS medium supplemented with indole-3-acetic acid (IAA) (1.0 mg L-1). Rooted plants transferred to potting soil were successfully established. All in vitro regenerated plantlets showed to be normal, without morphological variations, being also identical to the source plant. Our study has shown that C. glaziovii can be propagated by tissue culture methods, allowing large scale multiplication of superior plants for pharmacological purposes.
Resumo:
Crude extracts of a callus culture (two culture media) and adult plants (two collections) from Alternanthera tenella Colla (Amaranthaceae) were evaluated for their antibacterial and antifungal activity, in order to investigate the maintenance of antimicrobial activity of the extracts obtained from plants in vivo and in vitro. The antibacterial and antifungal activity was determined against thirty strains of microorganisms including Gram-positive and Gram-negative bacteria, yeasts and dermatophytes. Ethanolic and hexanic extracts of adult plants collected during the same period of the years 1997 and 2002 [Ribeirao Preto (SP), collections 1 and 2] and obtained from plant cell callus culture in two different hormonal media (AtT43 and AtT11) inhibited the growth of bacteria, yeasts and dermatophytes with inhibition halos between 6 and 20 mm. For the crude extracts of adult plants bioassay-guided fractionation, purification, and isolation were performed by chromatographic methods, and the structures of the isolated compounds were established by analysis of chemical and spectral evidences (UV, IR, NMR and ES-MS). Steroids, saponins and flavonoids (aglycones and C-glycosides) were isolated. The minimum inhibitory concentration (MIC) of the isolated compounds varied from 50 to 500 mu g/mL.
Resumo:
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm(2) embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T-1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).
Resumo:
EDD (E3 isolated by differential display), located at chromosome 8q22.3, is the human orthologue of the Drosophila melanogaster tumour suppressor gene 'hyperplastic discs' and encodes a HECT domain E3 ubiquitin protein-ligase. To investigate the possible involvement of EDD in human cancer, several cancers from diverse tissue sites were analysed for allelic gain or loss (allelic imbalance, AI) at the EDD locus using an EDD-specific microsatellite, CEDD, and other polymorphic microsatellites mapped in the vicinity of the 8q22.3 locus. Of 143 cancers studied, 38 had AI at CEDD (42% of 90 informative cases). In 14 of these cases, discrete regions of imbalance encompassing 8q22.3 were present, while the remainder had more extensive 8q aberrations. AI of CEDD was most frequent in ovarian cancer (22/47 informative cases, 47%), particularly in the serous subtype (16/22, 73%), but was rare in benign and borderline ovarian tumours. AI was also common in breast cancer (31%), hepatocellular carcinoma (46%), squamous cell carcinoma of the tongue (50%) and metastatic melanoma (18%). AI is likely to represent amplification of the EDD gene locus rather than loss of heterozygosity, as quantitative RT-PCR and immunohistochemistry showed that EDD mRNA and protein are frequently overexpressed in breast and ovarian cancers, while among breast cancer cell lines EDD overexpression and increased gene copy number were correlated. These results demonstrate that AI at the EDD locus is common in a diversity of carcinomas and that the EDD gene is frequently overexpressed in breast and ovarian cancer, implying a potential role in cancer progression.
Resumo:
Hyperplastic polyposis is a loosely defined syndrome initially thought not to confer a clinically important predisposition to colorectal cancer. The aim of the current study was to examine the clinical, histologic, and molecular features of a prospective series of cases meeting a strict definition of the condition. Twelve patients were identified, seven of whom had developed colorectal cancer. Most polyps were hyperplastic, but 11 patients also had polyps containing dysplasia as either serrated adenomas. mixed polyps, or traditional adenomas. The mean percentage of dysplastic polyps in patients with cancer was 35%, and in patients without cancer, 11%(p < 0.05). Microsatellite instability (MSI) was present in 3 of 47 hyperplastic polyps and two of right serrated adenomas. Kras was mutated in 8 of 47 hyperplastic polyps and two of eight serrated adenomas. No polyps showed loss of heterozygosity of chromosomes 5q, 1p, or 18q. Two of seven cancers showed a high level of MSI. It is concluded that hyperplastic polyposis is associated with a high risk of colorectal cancer. Hyperplastic polyps are the dominant type of polyp, but most cases have some dysplastic epithelium. A higher proportion of dysplastic polyps is associated with increased cancer risk. Clonal generic changes are observed in some hyperplastic polyps and serrated adenomas.
Resumo:
Hyperplastic polyps have traditionally been regarded as nonneoplastic polyps lacking malignant potential. The demonstration of genetic alterations within these lesions indicates an underlying neoplastic cause. There is evidence that hyperplastic polyps are heterogeneous. Most are innocuous, but subsets may have malignant potential. Risk factors for neoplastic progression include multiple, large, and proximally located polyps. Aberrant methylation resulting in the silencing of cancer genes may be an important underlying mechanism, particularly in pathways progressing to tumors with DNA microsatellite instability. Lesions intermediate between hyperplastic polyp and cancer include admired polyps and serrated adenomas. Currently, pathologists have different thresholds for diagnosing serrated adenomas, including the distinction from large hyperplastic polyps. Reasons for over looking this pathway in the past may include rapid tumor progression and the fact that proximally located hyperplastic polyps may be flat and not especially numerous. Management of the serrated pathway of colorectal neoplasia may require novel approaches to screening, early detection, and prevention.
Resumo:
Sugar uptake and metabolism were studied in callus cultures and shoot tips of asparagus. Asparagus callus cultures were used to model senescence in shoot tips. Callus cultures absorbed glucose from a nutrient medium, and accumulated sucrose, glucose and fructose. This uptake of glucose by the callus cultures down-regulated expression of asparagine synthetase and beta -galactosidase transcripts that otherwise accumulated when sugar was withheld. When 80 mm-long asparagus shoots were excised from growing plants and placed in 2% and 8% sucrose solutions, endogenous concentrations of sucrose, glucose, fructose, UDPglucose, and glucose-6-phosphate declined in the 30mm-long meristematic tip regions. At the same time, asparagine and asparagine synthetase gene transcripts began to accumulate in these tips. When 10 mm-long asparagus shoot tips were placed on glucose- or fructose-containing agar, the tips accumulated sucrose, glucose and fructose, and asparagine accumulation and expression of asparagine synthetase were marginally reduced. We concluded that in callus cultures, asparagine synthetase expression was sugar regulated, but that sugar regulation was not as pronounced in asparagus shoot tips. This may be due in part to slower rates of sugar uptake into shoot tips and in part to compartmentation of sugars in the tips. We suggest that callus cultures are not a suitable model for metabolic studies in asparagus shoot tips.
Resumo:
We evaluated the efficiency of callus induction and plantlet regeneration from hypocotyl explants of broccoli (Brassica oleracea var. italica). The cultivars were ‘Marathon’, ‘Greenbelt’, and ‘Shogun’. Transformation success was not affected by the presence of tobacco feeder-cell layers on the culture media. The frequency of shoot regeneration was greater from 10-d-old hypocotyls than from 14-d-old hypocotyls. Both ‘Marathon’ and ‘Greenbelt’ had higher potentials for tissue regeneration than did ‘Shogun’. We found that for transformation selection, the optimum concentration was either 50 mg/L kanamycin or 100 mg/L genetkin.
Resumo:
Caustis blakei is an attractive cut foliage plant harvested from the wild in Australia and marketed under the name of koala fern. Previous attempts to propagate large numbers of this plant have been unsuccessful. The effect of four light irradiances on organogenesis from compact and friable callus of C. blakei was studied for 21 wk. Both callus types produced numerous primordial shoots but many failed to develop into green plantlets. However, significantly more primordial shoots and green plantlets developed on the friable callus than on the compact callus, and significantly more green plantlets were regenerated under the higher photon irradiances of 200 and 300 mumol m(-2) s(-1) than under the lower irradiances of 100 and 150 mumol m(-2) s(-1). The compact callus produced its maximum number of green plantlets early in the experiment (after 9 wk), while the friable callus continued to produce primordial shoots and green plantlets throughout the period of the experiment, and reached its maximum production of green plantlets at 21 wk under the irradiance of 300 mumol m(-2) s(-1). Organogenesis from friable callus under high irradiance (300 mumol m(-2) s(-1)) offers an efficient propagation method for C. blakei.
Resumo:
AIMS: To compare the molecular profile of a series of sessile serrated adenomas (SSAs) and hyperplastic polyps (HPs), in order to distinguish these lesions, SSAs having a potential role in the genesis of serrated adenocarcinomas through a serrated pathway in which methylation plays a key role. METHODS AND RESULTS: Twelve HPs and sixteen SSAs of the right and left colon were investigated for microsatellite instability, DNA mismatch repair genes, p53, p16, and beta-catenin expression, MLH1 and p16 (CDKN2A) gene methylation, and KRAS and BRAF mutations. Both SSAs and HPs were microsatellite stable. MLH1 and MSH2 protein silencing, aberrant cytoplasmic expression and methylation of p16 were found to be exclusive to right-sided SSAs. The MLH1 promoter gene was frequently methylated in right-sided SSAs in contrast with HPs. Abnormal p53 and beta-catenin expression was present in both SSAs and HPs. BRAF and KRAS mutation were mutually exclusive, but KRAS mutation was present only in left-sided SSAs and HPs. CONCLUSIONS: HPs and SSAs may be related lesions. However, at least right-sided SSAs differ from left-sided SSAs and HPs in the occurrence of MLH1 and p16 methylation, supporting the hypothesis that SSAs could be precursors of serrated adenocarcinomas.
Resumo:
We have previously characterized an infectious mouse mammary tumor virus [(MMTV(SW)] which induces a strong superantigen response in vivo. Here we describe the isolation and characterization of MMTV(C4) which was derived from milk of mice implanted with hyperplastic alveolar nodules. MMTV(C4) stimulates V beta 2 expressing T cells after local injection in vivo. Comparison with known open reading frame (orf) sequences revealed high homology to Mtv-6, an endogenous virus interacting with V beta 3-expressing T cells. The carboxyl-terminal amino acids were, however, altered. High homology including the carboxyl-terminal orf amino acids were found with MMTV(C3H-K). We show here that MMTV(C3H-K) has lost its superantigen function. Sequence comparisons permitted the characterization of few key amino acids which could be important for T cell receptor interaction and superantigen processing.
Resumo:
The cytopathology of grapevine (Vitis spp.) callus tissue infected with Grapevine leafroll-associated virus 3 (GLRaV-3), genus Vitivirus was studied in order to investigate the usefulness of callus cultures to study grapevine leafroll-associated viruses. Ultrathin sections were made from in vitro callus obtained from stems and shoots of GLRaV-3 infected grapevine plants. Callus was composed of two types of tissue. Translucent, soft callus was formed and composed of large loosely arranged cells, containing big vacuoles and a thin layer of cytoplasm. Other parts of the callus were brown-coloured and composed of small compactly arranged cells, which showed flexuous and rod-shaped closterovirus-like particles, with 10-12 nm in diameter, at higher magnifications. Groups of vesicles formed by a single membrane were also observed, with sizes ranging from 50-200 nm, containing fine fibrillar material, also typical of closterovirus infections. Virus concentration was monitored by Immunosorbent electron microscopy (ISEM) tests, which showed that in vitro culture of callus tissue from grapevine infected plants, could be used to study the GLRaV viruses through many successive generations, despite the decline in virus concentration after repeated transfers. No virus particles were observed in callus tissue obtained from healthy grapevines.