25 resultados para Hydroxytyrosol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extra virgin olive oil is rich in phenolic compounds which are believed to exert beneficial effects against many pathological processes, including the development of colon cancer. We show that one of the major polyphenolic constituents of extra virgin olive oil, hydroxytyrosol (HT), exerts strong anti-proliferative effects against human colon adenocarcinoma cells via its ability to induce a cell cycle block in G2/M. These antiproliferative effects were preceded by a strong inhibition of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and a downstream reduction of cyclin D I expression, rather than by inhibition of p38 activity and cyclooxygenase-2 (COX-2) expression. These findings are of particular relevance due to the high colonic concentration of HT compared to the other olive oil polyphenols and may help explain the inverse link between colon cancer and olive oil consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The olive oil polyphenol, hydroxytyrosol (HT), is believed to be capable of exerting protection against oxidative kidney injury. In this study we have investigated the ability of HT and its O-methylated metabolite, homovanillic alcohol (HVA) to protect renal cells against oxidative damage induced by hydrogen peroxide. We show that both compounds were capable of inhibiting hydrogen peroxide-induced kidney cell injury via an ability to interact with both MAP kinase and PI3 kinase signalling pathways, albeit at different concentrations. HT strongly inhibited death and prevented peroxide-induced increases in ERK1/2 and JNK1/2/3 phosphorylation at 0.3 microM, whilst HVA was effective at 10 microM. At similar concentrations, both compounds also prevented peroxide-induced reductions in Akt phosphorylation. We suggest that one potential protective effect exerted by olive oil polyphenols against oxidative kidney cell injury may be attributed to the interactions of HT and HVA with these important intracellular signalling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research work has dealt with the study of new catalytic processes for the synthesis of fine chemicals belonging to the class of phenolics, namely 2-phenoxyethanol and hydroxytyrosol. The two synthetic procedures investigated have the advantages of being much closer to the Green Chemistry principles than those currently used industrially. In both cases, the challenge was that of finding catalysts and methods which led to the production of less waste, and used less hazardous chemicals, safer solvents, and reusable heterogeneous catalysts. In the case of 2-phenoxyethanol, the process investigated involves the use of ethylene carbonate (EC) as the reactant for phenol O-hydroxyethylation, in place of ethylene oxide. Besides being a safer reactant, the major advantage of using EC in the new synthesis is the better selectivity to the desired product achieved. Moreover, the solid catalyst based on Na-mordenite was fully recyclable. The reaction mechanism and the effect of the Si/Al ratio in the mordenite were investigated. In the case of hydroxytyrosol, which is one of the most powerful natural antioxidants, a new synthetic procedure was investigated; in fact, the method currently employed, the hydrolysis of oleuropein, an ester extracted from the waste water processing of the olive, makes use of large amounts of organic solvents (hexane, ethyl acetate), and involves several expensive steps of purification. The synthesis procedure set up involves first the reaction between catechol and 2,2-dimethoxyacetaldehyde, followed by the one-pot reduction of the intermediate to give the desired product. Both steps were optimized, in terms of catalyst used, and of reaction conditions, that allowed to reach ca 70% yield in each step. The reaction mechanism was investigated and elucidated. During a 3-month period spent at the University of Valencia (with Prof. A. Corma’s group), a process for the production of diesel additives (2,5-bis(propoxymethyl)furan) from fructose has been investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antioxidant nano-biocomposites based on poly(ε-caprolactone) (PCL) were prepared by incorporating hydroxytyrosol (HT) and a commercial montmorillonite, Cloisite®30B (C30B), at different concentrations. A full structural, thermal, mechanical and functional characterization of the developed nano-biocomposites was carried out. The presence of the nanoclay and HT increased PCL crystallinity, whereas some decrease in thermal stability was observed. TEM analyses corroborated the good dispersion of C30B into the PCL macromolecular structure as already asserted by XRD tests, since no large aggregates were observed. A reduction in oxygen permeability and increase in elastic modulus were obtained for films containing the nanoclay. Finally, the presence of the nanoclay produced a decrease in the HT release from films due to some interaction between HT and C30B. Results proved that these nano-biocomposites can be an interesting and environmentally-friendly alternative for active food packaging applications with antioxidant performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A supercritical carbon dioxide (scCO2) based oil extraction method was implemented on olive pomace (alperujo), and an oil yield of 25,5 +/- 0,8% (goil/gdry residue) was obtained. By Soxhlet extraction with hexane, an oil extraction yield of 28,9 +/- 0,8 % was obtained, which corresponds to an efficiency of 88,4 +/- 4,8 % for the supercritical method. The scCO2 extraction process was optimized for operating conditions of 50 MPa and 348,15 K, for which an oil loading of 32,60 g oil/kg CO2 was calculated. As a proof of concept, olive pomace was used as feedstock for biodiesel production, in a process combining the use of lipase as a catalyst with the use of scCO2 as a solvent, and integrating the steps of oil extraction, oil to biodiesel transesterification and subsequent separation of the latter. In the conducted experiments, FAME (fatty acid methyl ester) purities of 90% were obtained, with the following operating parameters: an oil:methanol molar ratio of 1:24; a residence time of 7,33 and 11,6 mins; a pressure of 40 MPa; a temperature of 313,15 K; and Lipozyme (Mucor miehei; Sigma-Aldritch) as an enzyme. However, oscillations of FAME purity were registered throughout the experiments, which could possibly be due to methanol accumulation in the enzymatic reactor. Finally, the phenolic content of olive pomace, and the effect of the drying process – oven or freeze-drying – and the extraction methods – hydro-alcoholic method and supercritical method – on the phenolic content were analysed. It was verified that the oven-drying process on the olive pomace preserved 90,1 +/- 3,6 % of the total phenolic content. About 62,3 +/- 5,53% of the oven-dried pomace phenolic content was extracted using scCO2 at 60 MPa and 323,15 K. Seven individual phenols – hydroxytyrosol, tyrosol, oleuropein, quercetin, caffeic acid, ferulic acid and p-coumaric acid – were identified and quantified by HPLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant activity and interactions with copper of four olive oil phenolic compounds, namely oleuropein, hydroxytyrosol, 3,4- dihydroxyphenylethanol- elenolic acid ( 1), and 3,4- dihydroxyphenyl-ethanolelenolic acid dialdehyde ( 2), in olive oil and oil- in- water emulsions stored at 60 degrees C were studied. All four phenolic compounds significantly extended the induction time of lipid oxidation in olive oil with the order of activity being hydroxytyrosol > compound 1 > compound 2 > oleuropein > alpha- tocopherol; but in the presence of Cu( II), the stability of oil samples containing phenolic compounds decreased by at least 90%, and the antioxidant activity of hydroxytyrosol and compounds 1 and 2 became similar. In oil- in- water emulsions prepared from olive oil stripped of tocopherols, hydroxytyrosol enhanced the prooxidant effect of copper at pH 5.5 but not at pH 7.4. The stability of samples containing copper at pH 5.5 was not significantly different if oleuropein was present from that of the control. Oleuropein at pH 7.4, and compounds 1 and 2 at both pH values tested, reduced the prooxidant effect of copper. The lower stability and the higher reducing capacity of all compounds at pH 7.4 could not explain the higher stability of emulsions containing phenolic compounds at this pH value. However, mixtures containing hydroxytyrosol or oleuropein with copper showed higher 1,1-diphenyl- 2- picrylhydrazyl radical scavenging activity at pH 7.4 than at pH 5.5. Moreover, the compound 2- copper complex showed higher radical scavenging activity then the uncomplexed compound at pH 5.5. It can be concluded that the formation of a copper complex with radical scavenging activity is a key step in the antioxidant action of the olive oil phenolic compounds in an emulsion containing copper ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant activity of hydroxytyrosol, hydroxytyrosol acetate, oleuropein, 3,4-dihydroxyphenylelenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenyielenolic acid dialdehyde (3,4-DHPEA-EDA) towards oxidation initiated by 2,2'-azobis (2-amidinopropane) hydrochloride in a soybean phospholipid liposome system was studied. The antioxidant activity of these olive oil phenols was similar and the duration of the lag phase was almost twice that of alpha-tocopherol. Trolox(R), a water-soluble analogue of alpha-tocopherol, showed the worst antioxidant activity. However, oxidation before the end of the lag phase was inhibited less effectively by the olive oil phenols than by alpha-tocopherol and Trolox(R). Synergistic effects (11-20% increase in lag phase) were observed in the antioxidant activity of combinations of alpha-tocopherol with olive oil phenols both with and without ascorbic acid. Fluorescence anisotropy of probes and fluorescence quenching studies showed that the olive oil phenols did not penetrate into the membrane, but their effectiveness as antioxidants showed they were associated with the surface of the phospholipid bilayer. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ferric complexing capacity of four phenolic compounds, occurring in olives and virgin olive oil, namely, oleuropein, hydroxytyrosol, 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA), and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA), and their stability in the presence of ferric ions were studied. At pH 3.5, all compounds formed a reversible 1:1 complex with ferric ions, but hydroxytyrosol could also form complexes containing > 1 ferric ion per phenol molecule. At pH 5.5, the complexes between ferric ions and 3,4-DHPEA-EA or 3,4-DHPEA-EDA were relatively stable, indicating that the antioxidant activity of 3,4-DHPEA-EA or 3,4-DHPEA-EDA at pH 5.5 is partly due to their metal-chelating activity. At pH 7.4, a complex containing > 1 ferric ion per phenol molecule was formed with hydroxytyrosol. Oleuropein, 3,4-DHPEA-EA, and 3,4-DHPEA-EDA also formed insoluble complexes at this pH. There was no evidence for chelation of Fe(II) by hydroxytyrosol or its derivatives. At all pH values tested, hydroxytyrosol was the most stable compound in the absence of Fe(III) but the most sensitive to the presence of Fe(III).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies in human, animal and cellular systems suggest that phenols from virgin olive oil are capable of inhibiting several stages in carcinogenesis, including metastasis. The invasion cascade comprises cell attachment to extracellular matrix components or basement membrane, degradation of basement membrane by proteolytic enzymes and migration of cells through the modified matrix. In the present study, we investigated the effect of phenolics extracted from virgin olive oil (OVP) and its main constituents: hydroxytyrosol (3,4-dihydroxyphenylethanol), tyrosol (p-hydroxyphenylethanol), pinoresinol and caffeic acid. The effects of these phenolics were tested on the invasion of HT115 human colon carcinoma cells in a Matrigel invasion assay. OVP and its compounds showed different dose-related anti-invasive effects. At 25 mu g/ml OVP and equivalent doses of individual compounds, significant anti-invasive effects were seen in the range of 45-55% of control. Importantly, OVP, but not the isolated phenolics, significantly reduced total cell number in the Matrigel invasion assay. There were no significant effects shown on cell viability, indicating the reduction of cell number in the Matrigel invasion assay was not due to cytotoxicity. There were also no significant effects on cell attachment to plastic substrate, indicating the importance of extracellular matrix in modulating the anti-invasive effects of OVP. In conclusion, the results from this study indicate that phenols from virgin olive oil have the ability to inhibit invasion of colon cancer cells and the effects may be mediated at different levels of the invasion cascade. (c) 2007 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentration of hydroxytyrosol (3,4-DHPEA) and its secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEA-EA) in virgin olive oil decreased rapidly when the oil was repeatedly used for preparing french fries in deep-fat frying operations. At the end of the first frying process (10 min at 180 degreesC), the concentration of the dihydroxyphenol components was reduced to 50-60% of the original value, and after six frying operations only about 10% of the initial components remained. However, tyrosol (p-HPEA) and its derivatives (p-HPEA-EDA and p-HPEA-EA) in the oil were much more stable during 12 frying operations. The reduction in their original concentration was much smaller than that for hydroxytyrosol and its derivatives and showed a roughly linear relationship with the number of frying operations. The antioxidant activity of the phenolic extract measured using the DPPH test rapidly diminished during the first six frying processes, from a total antioxidant activity higher than 740,mumol of Trolox/kg down to less than 250 mumol/kg. On the other hand, the concentration of polar compounds, oxidized triacylglycerol monomers (oxTGs), dimeric TGs, and polymerized TGs rapidly increased from the sixth frying operation onward, when the antioxidant activity of the phenolic extract was very low, and as a consequence the oil was much more susceptible to oxidation. The loss of antioxidant activity in the phenolic fraction due to deep-fat frying was confirmed by the storage oil and oil-in-water emulsions containing added extracts from olive oil used for 12 frying operations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have conducted a detailed investigation into the absorption, metabolism and microflora-dependent transformation of hydroxytyrosol ( HT), tyrosol (TYR) and their conjugated forms, such as oleuropein (OL). Conjugated forms underwent rapid hydrolysis under gastric conditions, resulting in significant increases in the amount of free HT and TYR entering the small intestine. Both HT and TYR transferred across human Caco-2 cell monolayers and rat segments of jejunum and ileum and were subject to classic phase I/II biotransformation. The major metabolites identified were an O-methylated derivative of HT, glucuronides of HT and TYR and a novel glutathionylated conjugate of HT. In contrast, there was no absorption of OL in either model. However, OL was rapidly degraded by the colonic microflora resulting in the formation of HT. Our study provides additional information regarding the breakdown of complex olive oil polyphenols in the GI tract, in particular the stomach and the large intestine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the anti-proliferative effects of an olive oil polyphenolic extract on human colon adenocarcinoma cells. Analysis indicated that the extract contained hydroxytyrosol, tyrosol and the various secoiridoid derivatives, including oleuropein. This extract exerted a strong inhibitory effect on cancer cell proliferation, which was linked to the induction of a G2/M phase cell cycle block. Following treatment with the extract (50 mu g/ml) the number of cells in the G2/M phase increased to 51.82 +/- 2.69% relative to control cells (15.1 +/- 2.5%). This G2/M block was mediated by the ability of olive oil polyphenols (50 mu g/ml) to exert rapid inhibition of p38 (38.7 +/- 4.7%) and CREB (28.6 +/- 5.5%) phosphorylation which led to a downstream reduction in COX-2 expression (56.9 +/- 9.3%). Our data suggest that olive oil polyphenols may exert chemo preventative effects in the large intestine by interacting with signalling pathways responsible for colorectal cancer development. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The secoiridoids 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA) account for approximately 55 % of the phenolic content of olive oil and may be partly responsible for its reported human health benefits. We have investigated the absorption and metabolism of these secoiridoids in the upper gastrointestinal tract. Both 3,4-DHPEA-EDA and 3,4-DHPEA-EA were relatively stable under gastric conditions, only undergoing limited hydrolysis. Both secoiridoids were transferred across a human cellular model of the small intestine (Caco-2 cells). However, no glucuronide conjugation was observed for either secoiridoid during transfer, although some hydroxytyrosol and homovanillic alcohol were formed. As Caco-2 cells are known to express only limited metabolic activity, we also investigated the absorption and metabolism of secoiridoids in isolated, perfused segments of the jejunum and ileum. Here, both secoiridoids underwent extensive metabolism, most notably a two-electron reduction and glucuronidation during the transfer across both the ileum and jejunum. Unlike Caco-2 cells, the intact small-intestinal segments contain NADPH-dependent aldo-keto reductases, which reduce the aldehyde carbonyl group of 3,4-DHPEA-EA and one of the two aldeydic carbonyl groups present on 3,4-DHPEA-EDA. These reduced forms are then glucuronidated and represent the major in vivo small-intestinal metabolites of the secoiridoids. In agreement with the cell studies, perfusion of the jejunum and ileum also yielded hydroxytyrosol and homovanillic alcohol and their respective glucuronides. We suggest that the reduced and glucuronidated forms represent novel physiological metabolites of the secoiridoids that should be pursued in vivo and investigated for their biological activity.