1000 resultados para Hydrothermal methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of hexagonal barium ferrite (BaFe12O19) was studied under hydrothermal conditions by a method in which a significant amount of ferrous chloride was introduced along side ferric chloride among the starting materials. Though all of the Fe2+ ions in the starting material were converted to Fe3+ ions in the final product, Fe2+ was confirmed to participate differently from the Fe3+ used in the conventional method in the mechanism of forming barium ferrite. Indeed the efficiency of the synthesis and the quality of the product and the lack of impurities such as Fe2O3 and BaFe2O4 were improved when Fe2+ was included. However, the amount of ferrous ions that could be included to obtain the desired product was limited with an optimum ratio of 2:8 for FeCl2/FeCl3 when only 2h of reaction time were needed. It was also found that the role of trivalent Fe3+ could be successfully replaced by Al3+. Up to 50% of their on could be replaced by Al3+ in the reactants to produce Al- doped products. It was also found that the ratio of Fe2+/M3+ could be increased in the presence of Al3+ to produce high quality barium ferrite.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, (Ca 1-xCu x)TiO 3 crystals with (x = 0, 0.01 and 0.02), labeled as CTO, CCTO1 and CCTO2, were synthesized by the microwave-hydrothermal method at 140°C for 32 min. XRD patterns (Fig. 1), Rietveld refinement and FT-Raman spectroscopy indicated that these crystals present orthorhombic structure Pbnm. Micro-Raman and XANES spectra suggested that the substitution of Ca by Cu in A-site promoted a displacement of the [TiO6]-[TiO6] clusters adjacent from its symmetric center, which leads distortions on the [CaO 12] clusters neighboring and consequently cause the strains into the CaTiO3 lattice. FE-SEM images showed that these crystals have an irregular shape as cube like probably indicating an Ostwald-ripening and self-assemble as dominant mechanisms to crystals growth. The powders presented an intense PL blue-emission.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work CdMoO 4 nanoparticles were obtained under hydrothermal conditions using microwave radiation (2.45 GHz) (MH) at 100°C for different times. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure CdMoO 4 phases were obtained. FEG-SEM powders present large-scale and homogeneous particles with microspheres-like morphology. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) emission in the green wavelength range of 540-546 nm. Photocatalytic activity of CdMoO 4 nanocrystals was examined by monitoring the degradation of rhodamine B dye.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, zinc oxide powders were synthesized by microwave-assisted hydrothermal method in basic medium. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure ZnO phases were obtained after MH processing performed at 130°C/ 1h. FEG-SEM micrographs reveals that these nanostructures are made up of ZnO plates. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) in the different zinc powders. An orange PL emission when excited by 350 nm wavelength at room temperature was observad in the different powders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This communication reports that FeWO 4 nanocrystals were successfully synthesized by the microwave-hydrothermal method at 443 K for 1 h. The structure and shape of these nanocrystals were characterized by X-ray diffraction, Rietveld refinement, and transmission electron microscopy. The experimental results and first principles calculations were combined to explain the electronic structure and magnetic properties. Experimental data were obtained by magnetization measurements for different applied magnetic fields. Theoretical calculations revealed that magnetic properties of FeWO 4 nanocrystals can be assigned to two magnetic orderings with parallel or antiparallel spins in adjacent chains. These factors are crucial to understanding of competition between ferro- and antiferromagnetic behavior. © 2012 Elsevier Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cystalline ceria (CeO2) nanoparticles have been synthesized by a simple and fast microwave-assisted hydrothermal (MAH) under NaOH, KOH, and NH4OH mineralizers added to a cerium ammonium nitrate aqueous solution. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transformed-IR and Raman spectroscopies. Rietveld refinement reveals a cubic structure with a space group Fm3m while infrared data showed few traces of nitrates. Field emission scanning microcopy (FEG-SEM) revealed a homogeneous size distribution of nanometric CeO2 nanoparticles. The MAH process in KOH and NaOH showed most effective to dehydrate the adsorbed water and decrease the hydrogen bonding effect leaving a weakly agglomerated powder of hydrated ceria. TEM micrographs of CeO2 synthesized under MAH conditions reveal particles well-dispersed and homogeneously distributed. The MAH enabled cerium oxide to be synthesized at 100 °C for 8 min. © 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crystalline terbium-doped indium hydroxide structures were prepared by a rapid and efficient Microwave-Assisted Hydrothermal (MAH) method. Nanostructures were obtained at a low temperature. FE-SEM images confirm that these samples are composed of 3D nanostructures. XRD, optical diffuse reflectance and photoluminescence (PL) measurements were used to characterize the products. Emission spectra of terbium-doped indium hydroxide (In(OH)3:xTb 3+) samples under excitation (350.7 nm) presented broad band emission referent to the indium hydroxide matrix and 5D4 → 7F6, 5D4 → 7F 5, 5D4 → 7F4, and 5D4 → 7F3 terbium transitions at 495, 550, 590 and 627 nm, respectively. Relative intensities of the Tb 3+ emissions increased as the concentration of this ion increased from 0, 1, 2, 4 and 8 mol%, of Tb3+, but the luminescence is drastically quenched for the In(OH)3 matrix. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans cette thèse, nous démontrons des travaux sur la synthèse à faible coût des matériaux de cathode et l'anode pour les piles lithium-ion. Pour les cathodes, nous avons utilisé des précurseurs à faible coût pour préparer LiFePO4 et LiFe0.3Mn0.7PO4 en utilisant une méthode hydrothermale. Tout d'abord, des matériaux composites (LiFePO4/C) ont été synthétisés à partir d'un précurseur de Fe2O3 par une procédé hydrothermique pour faire LiFePO4(OH) dans une première étape suivie d'une calcination rapide pour le revêtement de carbone. Deuxièmement, LiFePO4 avec une bonne cristallinité et une grande pureté a été synthétisé en une seule étape, avec Fe2O3 par voie hydrothermale. Troisièmement, LiFe0.3Mn0.7PO4 a été préparé en utilisant Fe2O3 et MnO comme des précurseurs de bas coûts au sein d'une méthode hydrothermale synthétique. Pour les matériaux d'anode, nous avons nos efforts concentré sur un matériau d'anode à faible coût α-Fe2O3 avec deux types de synthèse hydrothermales, une a base de micro-ondes (MAH) l’autre plus conventionnelles (CH). La nouveauté de cette thèse est que pour la première fois le LiFePO4 a été préparé par une méthode hydrothermale en utilisant un précurseur Fe3+ (Fe2O3). Le Fe2O3 est un précurseur à faible coût et en combinant ses coûts avec les conditions de synthèse à basse température nous avons réalisé une réduction considérable des coûts de production pour le LiFePO4, menant ainsi à une meilleure commercialisation du LiFePO4 comme matériaux de cathode dans les piles lithium-ion. Par cette méthode de préparation, le LiFePO4/C procure une capacité de décharge et une stabilité de cycle accrue par rapport une synthétisation par la méthode à l'état solide pour les mêmes précurseurs Les résultats sont résumés dans deux articles qui ont été récemment soumis dans des revues scientifiques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lanthanum strontium cobalt iron oxide (La1-xSrxCo1-yFeyO3 LSCF) is the most commonly used material for application as cathode in Solid Oxide Fuel Cells (SOFCs), mainly due to their high mixed ionic electronic conductivity between 600 and 800ºC. In this study, LSCF powders with different compositions were synthesized via a combination between citrate and hydrothermal methods. As-prepared powders were calcined from 700 to 900°C and then characterized by X-ray fluorescence, X-ray diffraction, thermal analyses, particle size analyses, nitrogen adsorption (BET) and scanning electronic microscopy. Films of composition La0,6Sr0,4Co0,2Fe0,8O3 (LSCF6428), powders calcined at 900°C, were screen-printed on gadolinium doped ceria (CGO) substrates and sintered between 1150 and 1200°C. The effects of level of sintering on the microstructure and electrochemical performance of electrodes were evaluated by scanning electronic microscopy and impedance spectroscopy. Area specific resistance (ASR) exhibited strong relation with the microstructure of the electrodes. The best electrochemical performance (0.18 ohm.cm2 at 800°C) was obtained for the cathode sintered at 1200°C for 2 h. The electrochemical activity can be further improved through surface activation by impregnation with PrOx, in this case the electrode area specific resistance decreases to values as low as 0.12 ohm.cm2 (800°C), 0.17 ohm.cm2 (750°C) and 0.31 ohm.cm2 (700°C). The results indicate that the citrate-hydrothermal method is suitable for the attainment of LSCF particulates with potential application as cathode component in intermediate temperature solid oxide fuel cells (IT-SOFCs)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Processing of the YMn2O5 powder is very challenging, since it decomposes to YMnO3 and Mn3O4 at temperatures close to 1180 °C, while samples consolidation commonly demands high temperatures. The main goal of this work is to investigate a possibility to prepare thick films of YMn2O5, since their deposition generally requires significantly lower temperatures. Multiferroic YMn 2O5 was synthesized by the hydrothermal method from Y(CH3COO)3·xH2O, Mn(CH 3COO)2·4H2O and KMnO4 precursors. XRD, FE-SEM and TEM analysis showed that the obtained powder was monophasic, with orthorhombic crystal structure and columnar particle shape with mean diameter and length of around 20 and 50 nm, respectively. The obtained powder was suspended in isopropyl alcohol with addition of appropriate binder and deflocculant. This suspension was used for electrophoretic deposition of YMn2O5 thick films under the high-voltage conditions and electric fields ranging from 250 to 2125 V/cm. The films obtained at 1000 V/cm and higher electric fields showed good adhesion, particle packing, homogeneity and very low porosity. It was shown that the deposition in extremely high electric fields (KC=2125 V/cm) can influence the crystal orientation of the films, resulting in formation of preferentially oriented films. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Titanium containing wormhole-like mesoporous silicas, denoted Ti-HMS, synthesized both via the hydrothermal synthesis route and the post synthesis grafting technique, known as molecular designed dispersion, have been successfully applied in the gas phase oxidation of Toluene to CO and CO2. Selectivity towards CO2 for all catalysts, at temperatures between 400-600degreesC, was above 80%. Benzene and benzaldehyde were observed at temperatures above 450degreesC, but in very low concentrations. The conversion of toluene was shown to increase significantly when the V-TEX/N-MESO ratios were increased from 0.07 to 0.84. No significant difference in catalytic activity was observed for catalysts prepared via the different synthesis techniques. The catalytic activity also depends on the concentration of tetrahedrally coordinated titanium atoms and not on the total concentration of titanium in the catalyst.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to assess the impact of the filtration method (in situ vs. ex situ) on the dissolved/particulate partitioning of 12 elements in hydrothermal samples collected from the Lucky Strike vent field (Mid-Atlantic Ridge; MAR). To do so, dissolved ( <0.45 mu m) and particulate Mg, Li, Mn, U, V, As, Ba, Fe, Zn, Cd, Pb and Cu were measured using different techniques (HR-ICP-MS, ICP-AES and CCSA). Using in situ filtration as a baseline, we showed that ex situ filtration (on-board and on shore after freezing) resulted in an underestimation of the dissolved pool, which was counterbalanced by an overestimation of the particulate pool for almost all the elements studied. We also showed that on-board filtration was acceptable for the assessment of dissolved and particulate Mn, Mg, Li and U for which the measurement bias for the dissolved fraction did not exceed 3%. However, in situ filtration appeared necessary for the accurate assessment of the dissolved and particulate concentrations of V, As, Fe, Zn, Ba, Cd, Pb and Cu. In the case of Fe, on-board filtration underestimated the dissolved pool by up to 96%. Laboratory filtration (after freezing) resulted in a large bias in the dissolved and particulate concentrations, unambiguously discounting this filtration method for deep-sea chemical speciation studies. We discuss our results in light of the precipitation processes that can potentially affect the accuracy of ex situ filtration methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use the finite element method to model the heat transfer phenomenon through permeable cracks in hydrothermal systems with upward throughflow. Since the finite element method is an approximate numerical method, the method must be validated before it is used to soh,e any new, kind of problem. However, the analytical solution, which can be used to validate the finite element method and other numerical methods, is rather limited in the literature, especially, for the problem considered here. Keeping this in mind, we have derived analytical solutions for the temperature distribution along the vertical axis of a crack in a fluid-saturated porous layer. After the finite element method is validated by comparing the numerical solution with the analytical solution for the same benchmark problem, it is used to investigate the pore-fluid flow and heat transfer in layered hydrothermal systems with vertical permeable cracks. The related analytical and numerical results have demonstrated that vertical cracks are effective and efficient members to transfer heat energy from the bottom section to the top section in hydrothermal systems with upward throughflow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen isotope measurements using SIMS and laser-fluorination methods confirm the presence of concentric and sector zoning in low-temperature (200 degrees C to < 400 degrees C) hydrothermal quartz from Alpine veins. While concentric zoning is most readily explained by changes in the chemical composition of the fluid or temperature of crystallization, the reasons for sector zoning are more difficult to explain. Relative enrichment in (18)O for crystallographically different sectors of quartz corresponds to m > r > z. Sector zoning is, however, largely limited to the exterior zones of crystals and/or to crystals with large Al (> 1000 ppm) and trace element contents, probably formed at temperatures < 250 degrees C. Differences in delta(18)O between the prismatic (m) relative to the rhombohedral (r and z) growth sectors of up to 2 parts per thousand can be explained by a combination of a face-related crystallographic and/or a growth rate control. In contrast, isotopic sector zoning of up to about 1.5 parts per thousand amongst the different rhombohedral faces increases in parallel with the trace element content and is likely to represent disequilibrium growth. This is indicated by non-systematic, up to 2 parts per thousand, differences within single growth zones and the irregular, larger or smaller, delta(18)O values (of several permil) of the exterior compared to the inner zones of the same crystals. Disequilibrium growth may be related to the large trace element content incorporated into the growing quartz at lower temperatures (< 250 degrees C) and/or be related to fluid-vapour separation, allowing crystal growth from both a vapour as well as a liquid phase.