994 resultados para Hydrology, Karst -- Catalonia
Resumo:
Descripció del sistema càrstic de Sant Martí de Llémena
Resumo:
Por el fondo de un valle de la provincia de Girona mana un conjunto de surgencias cuyo caudal total anual se acercaa medio centenar de hectómetros cúbicos. Controlando no solo la cantidad de agua de salida sino también su calidad desde el punto de vista de su contenido en tritio y a partir de un modelo conceptual de mezcla uniforme de las aguas de recarga, ya com probado en otros sistemas, se acota la cadencia de participación en las surgencias de las distintas recargas anuales, as como el tiempo de renovación del volumen de agua del sistema hidrogeológico
Resumo:
Travertines and volcanic landforms in the eastern pyrenees margin
Resumo:
En aquest treball s'analitzen les característiques generals i particulars dels esfondraments per carstificació que esprodueixen al terme municipal de Besalú, i s'examinen les diferents dades que permeten establir una primera aproximació cartogràfica del perill existent
Resumo:
Descripció de la zona lacustre de Banyoles des del punt de vista geològic i hidrogeologic
Resumo:
Descripció de la zona lacustre de Banyoles des del punt de vista geològic i hidrogeològic
Resumo:
Descripció del sistema càrstic de Sant Martí de Llémena
Resumo:
Descripció de la zona lacustre de Banyoles des del punt de vista geològic i hidrogeologic
Resumo:
Silica speleothems take differenr forms such as cylindrical stems growing from either the floor or the ceiling in granitic caves. Mineralogically they are opal-A and accumulate in successive layers with a whiskery druse tip formed by gypsum crystals. Initially they are porous but progressively become infilled by opal precipitation. This results in formation of solid speleothems. their size is only a few millimetres long. Bacterial activity accelerate quartz dissolution
Resumo:
The amorphous silica (opal-A) speleothems associated to the open structural system of granitic rocks where the slow circulation of runoff is produced are mainly the result of the biological degradation of the rock. These speleothems are found in many different geographic, climatic and geological environments though always associated to granitoids. They show two different morphologies: cylindrical or long bodies and laminar or layered forms. They are internally formed by a mass of clasts and spheres of opal-Awith a porous texture that evolves to compact and massive due to the reiteration of the re-dissolution/re-precipitation of the amorphous opal by the water that circulates through it after each rainfall period. A final characteristic of each growth stage (end of rainy period) is the development of whiskers of minerals, normally gypsum, on the water output points of the speleothems. The dimensions of the speleothems are millimetric (length and/or thickness). In this paper their morphology and mineralogy are described based on their study by SEM, XRD and XRF, and there is established a new and more complete genetic hypothesis than the one that exists up to now to understand their formation
Resumo:
Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators.
Resumo:
The aim of this work was to couple a nitrogen (N) sub-model to already existent hydrological lumped (LU4-N) and semi-distributed (LU4-R-N and SD4-R-N) conceptual models, to improve our understanding of the factors and processes controlling nitrogen cycling and losses in Mediterranean catchments. The N model adopted provides a simplified conceptualization of the soil nitrogen cycle considering mineralization, nitrification, immobilization, denitrification, plant uptake, and ammonium adsorption/desorption. It also includes nitrification and denitrification in the shallow perched aquifer. We included a soil moisture threshold for all the considered soil biological processes. The results suggested that all the nitrogen processes were highly influenced by the rain episodes and that soil microbial processes occurred in pulses stimulated by soil moisture increasing after rain. Our simulation highlighted the riparian zone as a possible source of nitrate, especially after the summer drought period, but it can also act as an important sink of nitrate due to denitrification, in particular during the wettest period of the year. The riparian zone was a key element to simulate the catchment nitrate behaviour. The lumped LU4-N model (which does not include the riparian zone) could not be validated, while both the semi-distributed LU4-R-N and SD4-R-N model (which include the riparian zone) gave satisfactory results for the calibration process and acceptable results for the temporal validation process.
Resumo:
A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.