983 resultados para Hydrological analysis
Resumo:
The present paper gives a comparative account of the hydrological conditions and phytoplankton within the Continental Shelf and beyond the Continental Shelf. 54 water samples were taken for hydrological analysis and 18 surface tows for plankton.
Resumo:
The Vernagtferner region has a long tradition of glaciological research performed by groups from Munich. It started in 1889, when Prof. Sebastian Finsterwalder from the Technical University in Munich produced the first map of a complete glacier based on terrestrial photogrammetry. Since then, numerous maps of the glacier have been made, describing the change in surface elevation for more than a century. These maps form the basis of the geodetic method of glacier mass balance determination, which provides volume changes as average data for the period between two surveys, i.e. typically for 10 years. Since the start of the glaciological method on Vernagtferner in 1964, annual as well as winter and summer mass balance data are available continuously. But only since 1973, the construction of the Vernagtbach station, approximately 1 km below the glacier margin at that time, provided the means to record a larger number of hydrological and meteorological parameters with a temporal resolution of typically 1 hour.
Resumo:
Floods are among the most devastating events that affect primarily tropical, archipelagic countries such as the Philippines. With the current predictions of climate change set to include rising sea levels, intensification of typhoon strength and a general increase in the mean annual precipitation throughout the Philippines, it has become paramount to prepare for the future so that the increased risk of floods on the country does not translate into more economic and human loss. Field work and data gathering was done within the framework of an internship at the former German Technical Cooperation (GTZ) in cooperation with the Local Government Unit of Ormoc City, Leyte, The Philippines, in order to develop a dynamic computer based flood model for the basin of the Pagsangaan River. To this end, different geo-spatial analysis tools such as PCRaster and ArcGIS, hydrological analysis packages and basic engineering techniques were assessed and implemented. The aim was to develop a dynamic flood model and use the development process to determine the required data, availability and impact on the results as case study for flood early warning systems in the Philippines. The hope is that such projects can help to reduce flood risk by including the results of worst case scenario analyses and current climate change predictions into city planning for municipal development, monitoring strategies and early warning systems. The project was developed using a 1D-2D coupled model in SOBEK (Deltares Hydrological modelling software package) and was also used as a case study to analyze and understand the influence of different factors such as land use, schematization, time step size and tidal variation on the flood characteristics. Several sources of relevant satellite data were compared, such as Digital Elevation Models (DEMs) from ASTER and SRTM data, as well as satellite rainfall data from the GIOVANNI server (NASA) and field gauge data. Different methods were used in the attempt to partially calibrate and validate the model to finally simulate and study two Climate Change scenarios based on scenario A1B predictions. It was observed that large areas currently considered not prone to floods will become low flood risk (0.1-1 m water depth). Furthermore, larger sections of the floodplains upstream of the Lilo- an’s Bridge will become moderate flood risk areas (1 - 2 m water depth). The flood hazard maps created for the development of the present project will be presented to the LGU and the model will be used to create a larger set of possible flood prone areas related to rainfall intensity by GTZ’s Local Disaster Risk Management Department and to study possible improvements to the current early warning system and monitoring of the basin section belonging to Ormoc City; recommendations about further enhancement of the geo-hydro-meteorological data to improve the model’s accuracy mainly on areas of interest will also be presented at the LGU.
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Esta Tesis realiza una contribución metodológica al estudio del impacto del cambio climático sobre los usos del agua, centrándose particularmente en la agricultura. Tomando en consideración su naturaleza distinta, la metodología aborda de forma integral los impactos sobre la agricultura de secano y la agricultura de regadío. Para ello incorpora diferentes modelos agrícolas y de agua que conjuntamente con las simulaciones de los escenarios climáticos permiten determinar indicadores de impacto basados en la productividad de los cultivos, para el caso de la agricultura de secano, e indicadores de impacto basados en la disponibilidad de agua para irrigación, para el caso de la agricultura de regadío. La metodología toma en consideración el efecto de la variabilidad climática en la agricultura, evaluando las necesidades de adaptación y gestión asociadas a los impactos medios y a la variabilidad en la productividad de los cultivos y el efecto de la variabilidad hidrológica en la disponibilidad de agua para regadío. Considerando la gran cantidad de información proporcionada por las salidas de las simulaciones de los escenarios climáticos y su complejidad para procesarla, se ha desarrollado una herramienta de cálculo automatizada que integra diferentes escenarios climáticos, métodos y modelos que permiten abordar el impacto del cambio climático sobre la agricultura, a escala de grandes extensiones. El procedimiento metodológico parte del análisis de los escenarios climáticos en situación actual (1961-1990) y futura (2071-2100) para determinar su fiabilidad y conocer qué dicen exactamente las proyecciones climáticas a cerca de los impactos esperados en las principales variables que intervienen en el ciclo hidrológico. El análisis hidrológico se desarrolla en los ámbitos territoriales de la planificación hidrológica en España, considerando la disponibilidad de información para validar los resultados en escenario de control. Se utilizan como datos observados las series de escorrentía en régimen natural estimadas el modelo hidrológico SIMPA que está calibrado en la totalidad del territorio español. Al trabajar a escala de grandes extensiones, la limitada disponibilidad de datos o la falta de modelos hidrológicos correctamente calibrados para obtener los valores de escorrentía, muchas veces dificulta el proceso de evaluación, por tanto, en este estudio se plantea una metodología que compara diferentes métodos de interpolación y alternativas para generar series anuales de escorrentía que minimicen el sesgo con respecto a los valores observados. Así, en base a la alternativa que genera los mejores resultados, se obtienen series mensuales corregidas a partir de las simulaciones de los modelos climáticos regionales (MCR). Se comparan cuatro métodos de interpolación para obtener los valores de las variables a escala de cuenca hidrográfica, haciendo énfasis en la capacidad de cada método para reproducir los valores observados. Las alternativas utilizadas consideran la utilización de la escorrentía directa simulada por los MCR y la escorrentía media anual calculada utilizando cinco fórmulas climatológicas basadas en el índice de aridez. Los resultados se comparan además con la escorrentía global de referencia proporcionada por la UNH/GRDC que en la actualidad es el “mejor estimador” de la escorrentía actual a gran escala. El impacto del cambio climático en la agricultura de secano se evalúa considerando el efecto combinado de los riesgos asociados a las anomalías dadas por los cambios en la media y la variabilidad de la productividad de los cultivos en las regiones agroclimáticas de Europa. Este procedimiento facilita la determinación de las necesidades de adaptación y la identificación de los impactos regionales que deben ser abordados con mayor urgencia en función de los riesgos y oportunidades identificadas. Para ello se utilizan funciones regionales de productividad que han sido desarrolladas y calibradas en estudios previos en el ámbito europeo. Para el caso de la agricultura de regadío, se utiliza la disponibilidad de agua para irrigación como un indicador del impacto bajo escenarios de cambio climático. Considerando que la mayoría de estudios se han centrado en evaluar la disponibilidad de agua en régimen natural, en este trabajo se incorpora el efecto de las infraestructuras hidráulicas al momento de calcular el recurso disponible bajo escenarios de cambio climático Este análisis se desarrolla en el ámbito español considerando la disponibilidad de información, tanto de las aportaciones como de los modelos de explotación de los sistemas hidráulicos. Para ello se utiliza el modelo de gestión de recursos hídricos WAAPA (Water Availability and Adaptation Policy Assessment) que permite calcular la máxima demanda que puede atenderse bajo determinados criterios de garantía. Se utiliza las series mensuales de escorrentía observadas y las series mensuales de escorrentía corregidas por la metodología previamente planteada con el objeto de evaluar la disponibilidad de agua en escenario de control. Se construyen proyecciones climáticas utilizando los cambios en los valores medios y la variabilidad de las aportaciones simuladas por los MCR y también utilizando una fórmula climatológica basada en el índice de aridez. Se evalúan las necesidades de gestión en términos de la satisfacción de las demandas de agua para irrigación a través de la comparación entre la disponibilidad de agua en situación actual y la disponibilidad de agua bajo escenarios de cambio climático. Finalmente, mediante el desarrollo de una herramienta de cálculo que facilita el manejo y automatización de una gran cantidad de información compleja obtenida de las simulaciones de los MCR se obtiene un proceso metodológico que evalúa de forma integral el impacto del cambio climático sobre la agricultura a escala de grandes extensiones, y a la vez permite determinar las necesidades de adaptación y gestión en función de las prioridades identificadas. ABSTRACT This thesis presents a methodological contribution for studying the impact of climate change on water use, focusing particularly on agriculture. Taking into account the different nature of the agriculture, this methodology addresses the impacts on rainfed and irrigated agriculture, integrating agricultural and water planning models with climate change simulations scenarios in order to determine impact indicators based on crop productivity and water availability for irrigation, respectively. The methodology incorporates the effect of climate variability on agriculture, assessing adaptation and management needs associated with mean impacts, variability in crop productivity and the effect of hydrologic variability on water availability for irrigation. Considering the vast amount of information provided by the outputs of the regional climate model (RCM) simulations and also its complexity for processing it, a tool has been developed to integrate different climate scenarios, methods and models to address the impact of climate change on agriculture at large scale. Firstly, a hydrological analysis of the climate change scenarios is performed under current (1961-1990) and future (2071-2100) situation in order to know exactly what the models projections say about the expected impact on the main variables involved in the hydrological cycle. Due to the availability of information for validating the results in current situation, the hydrological analysis is developed in the territorial areas of water planning in Spain, where the values of naturalized runoff have been estimated by the hydrological model SIMPA, which are used as observed data. By working in large-scale studies, the limited availability of data or lack of properly calibrated hydrological model makes difficult to obtain runoff time series. So as, a methodology is proposed to compare different interpolation methods and alternatives to generate annual times series that minimize the bias with respect to observed values. Thus, the best alternative is selected in order to obtain bias-corrected monthly time series from the RCM simulations. Four interpolation methods for downscaling runoff to the basin scale from different RCM are compared with emphasis on the ability of each method to reproduce the observed behavior of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index. The results are also compared with the global runoff reference provided by the UNH/GRDC dataset, as a contrast of the “best estimator” of current runoff on a large scale. Secondly, the impact of climate change on rainfed agriculture is assessed considering the combined effect of the risks associated with anomalies given by changes in the mean and variability of crop productivity in the agro-climatic regions of Europe. This procedure allows determining adaptation needs based on the regional impacts that must be addressed with greater urgency in light of the risks and opportunities identified. Statistical models of productivity response are used for this purpose which have been developed and calibrated in previous European study. Thirdly, the impact of climate change on irrigated agriculture is evaluated considering the water availability for irrigation as an indicator of the impact. Given that most studies have focused on assessing water availability in natural regime, the effect of regulation is incorporated in this approach. The analysis is developed in the Spanish territory considering the available information of the observed stream flows and the regulation system. The Water Availability and Adaptation Policy Assessment (WAAPA) model is used in this study, which allows obtaining the maximum demand that could be supplied under certain conditions (demand seasonal distribution, water supply system management, and reliability criteria) for different policy alternatives. The monthly bias corrected time series obtained by previous methodology are used in order to assess water availability in current situation. Climate change projections are constructed taking into account the variation in mean and coefficient of variation simulated by the RCM. The management needs are determined by the agricultural demands satisfaction through the comparison between water availability under current conditions and under climate change projections. Therefore, the methodology allows evaluating the impact of climate change on agriculture to large scale, using a tool that facilitates the process of a large amount of complex information provided by the RCM simulations, in order to determine the adaptation and management needs in accordance with the priorities of the indentified impacts.
Resumo:
Groundwater systems of different densities are often mathematically modeled to understand and predict environmental behavior such as seawater intrusion or submarine groundwater discharge. Additional data collection may be justified if it will cost-effectively aid in reducing the uncertainty of a model's prediction. The collection of salinity, as well as, temperature data could aid in reducing predictive uncertainty in a variable-density model. However, before numerical models can be created, rigorous testing of the modeling code needs to be completed. This research documents the benchmark testing of a new modeling code, SEAWAT Version 4. The benchmark problems include various combinations of density-dependent flow resulting from variations in concentration and temperature. The verified code, SEAWAT, was then applied to two different hydrological analyses to explore the capacity of a variable-density model to guide data collection. ^ The first analysis tested a linear method to guide data collection by quantifying the contribution of different data types and locations toward reducing predictive uncertainty in a nonlinear variable-density flow and transport model. The relative contributions of temperature and concentration measurements, at different locations within a simulated carbonate platform, for predicting movement of the saltwater interface were assessed. Results from the method showed that concentration data had greater worth than temperature data in reducing predictive uncertainty in this case. Results also indicated that a linear method could be used to quantify data worth in a nonlinear model. ^ The second hydrological analysis utilized a model to identify the transient response of the salinity, temperature, age, and amount of submarine groundwater discharge to changes in tidal ocean stage, seasonal temperature variations, and different types of geology. The model was compared to multiple kinds of data to (1) calibrate and verify the model, and (2) explore the potential for the model to be used to guide the collection of data using techniques such as electromagnetic resistivity, thermal imagery, and seepage meters. Results indicated that the model can be used to give insight to submarine groundwater discharge and be used to guide data collection. ^
Resumo:
This dissertation addresses sustainability of rapid provision of safe water and sanitation required to meet the Millennium Development Goals. Review of health-related literature and global statistics demonstrates engineers' role in achieving the MDGs. This review is followed by analyses relating to social, environmental, and health aspects of meeting MDG targets. Analysis of national indicators showed that inadequate investment, poor or nonexistent policies and governance are challenges to global sanitation coverage in addition to lack of financial resources and gender disparity. Although water availability was not found to be a challenge globally, geospatial analysis demonstrated that water availability is a potentially significant barrier for up to 46 million people living in urban areas and relying on already degraded water resources for environmental income. A daily water balance model incorporating the National Resources Conservation Services curve number method in Bolivian watersheds showed that local water stress is linked to climate change because of reduced recharge. Agricultural expansion in the region slightly exacerbates recharge reductions. Although runoff changes will range from -17% to 14%, recharge rates will decrease under all climate scenarios evaluated (-14% to -27%). Increasing sewer coverage may place stress on the readily accessible natural springs, but increased demand can be sustained if other sources of water supply are developed. This analysis provides a method for hydrological analysis in data scarce regions. Data required for the model were either obtained from publicly available data products or by conducting field work using low-cost methods feasible for local participants. Lastly, a methodology was developed to evaluate public health impacts of increased household water access resulting from domestic rainwater harvesting, incorporating knowledge of water requirements of sanitation and hygiene technologies. In 37 West African cities, domestic rainwater harvesting has the potential to reduce diarrheal disease burden by 9%, if implemented alone with 400 L storage. If implemented in conjunction with point of use treatment, this reduction could increase to 16%. The methodology will contribute to cost-effectiveness evaluations of interventions as well as evaluations of potential disease burden resulting from reduced water supply, such as reductions observed in the Bolivian communities.
Resumo:
Trend analysis is widely used for detecting changes in hydrological data. Parametric methods for this employ pre-specified models and associated tests to assess significance, whereas non-parametric methods generally apply rank tests to the data. Neither approach is suitable for exploratory analysis, because parametric models impose a particular, perhaps unsuitable, form of trend, while testing may confirm that trend is present but does not describe its form. This paper describes semi-parametric approaches to trend analysis using local likelihood fitting of annual maximum and partial duration series and illustrates their application to the exploratory analysis of changes in extremes in sea level and river flow data. Bootstrap methods are used to quantify the variability of estimates.
Resumo:
Global hydrological models (GHMs) model the land surface hydrologic dynamics of continental-scale river basins. Here we describe one such GHM, the Macro-scale - Probability-Distributed Moisture model.09 (Mac-PDM.09). The model has undergone a number of revisions since it was last applied in the hydrological literature. This paper serves to provide a detailed description of the latest version of the model. The main revisions include the following: (1) the ability for the model to be run for n repetitions, which provides more robust estimates of extreme hydrological behaviour, (2) the ability of the model to use a gridded field of coefficient of variation (CV) of daily rainfall for the stochastic disaggregation of monthly precipitation to daily precipitation, and (3) the model can now be forced with daily input climate data as well as monthly input climate data. We demonstrate the effects that each of these three revisions has on simulated runoff relative to before the revisions were applied. Importantly, we show that when Mac-PDM.09 is forced with monthly input data, it results in a negative runoff bias relative to when daily forcings are applied, for regions of the globe where the day-to-day variability in relative humidity is high. The runoff bias can be up to - 80% for a small selection of catchments but the absolute magnitude of the bias may be small. As such, we recommend future applications of Mac-PDM.09 that use monthly climate forcings acknowledge the bias as a limitation of the model. The performance of Mac-PDM.09 is evaluated by validating simulated runoff against observed runoff for 50 catchments. We also present a sensitivity analysis that demonstrates that simulated runoff is considerably more sensitive to method of PE calculation than to perturbations in soil moisture and field capacity parameters.
Resumo:
We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty. We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues.
Resumo:
The Tropical Rainfall Measuring Mission 3B42 precipitation estimates are widely used in tropical regions for hydrometeorological research. Recently, version 7 of the product was released. Major revisions to the algorithm involve the radar refl ectivity - rainfall rates relationship, surface clutter detection over high terrain, a new reference database for the passive microwave algorithm, and a higher quality gauge analysis product for monthly bias correction. To assess the impacts of the improved algorithm, we compare the version 7 and the older version 6 product with data from 263 rain gauges in and around the northern Peruvian Andes. The region covers humid tropical rainforest, tropical mountains, and arid to humid coastal plains. We and that the version 7 product has a significantly lower bias and an improved representation of the rainfall distribution. We further evaluated the performance of versions 6 and 7 products as forcing data for hydrological modelling, by comparing the simulated and observed daily streamfl ow in 9 nested Amazon river basins. We find that the improvement in the precipitation estimation algorithm translates to an increase in the model Nash-Sutcliffe effciency, and a reduction in the percent bias between the observed and simulated flows by 30 to 95%.
Resumo:
When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model.
Resumo:
When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model