994 resultados para Hydrogen flow


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cu catalysts supported on CeO2, TiO2 and CeO2/TiO2 were prepared by precipitation method and used for preferential oxidation of carbon monoxide contained in a hydrogen flow generated by methane steam reforming. The samples were characterized by XRD, BET and TPR techniques. The catalytic properties were studied in the 50-330ºC range by using a quartz micro-reactor vertically positioned on an electrical furnace. The results showed that the small copper particles generated with the lower metal content are the most easily reducible and give the best catalytic performance. In respect of support effect, the strong metal-support interaction and the redox characteristics of the CuOx-CeO2 series resulted in the best catalytic results, especially with the sample with 1% copper content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uniform metal iron ellipsoidal particles of around 200 nm in length were obtained by reduction and passivation of alumina-coated alpha-Fe2O3 (hematite) particles under different conditions of temperature and hydrogen flow rate. The monodispersed hematite particles were prepared by the controlled hydrolysis of ferric sulfate and further coated with a homogeneous thin layer of Al2O3 by careful selection of the experimental conditions, mainly pH and aluminum salt concentration. The reduction mechanism of alpha-Fe2O3 into alpha-Fe was followed by x-ray and electron diffraction, and also by the measurements of the irreversible magnetic susceptibility. The transformation was found to be topotactic with the [001] direction of hematite particles, which lies along the long axis of the particles, becoming the [111] direction of magnetite and finally the [111] direction of metal iron. Temperature and hydrogen flow rate during the reduction have been found to be important parameters, which determine not only the degree of reduction but also the crystallite size of the final particles. Magnetic characterization of the samples shows that the only parameters affected by the crystallite size are the saturation magnetization and magnetic time-dependence effect, i.e., activation volume. (C) 2002 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acicular monodispersed Fe1-xREx (RE= Nd, Sm,Eu,Tb;x=0, 0.05, 0.10) metallic nanoparticles (60 +/- 5 nm in length and axial ratio similar to6) obtained by reduction of alumina-coated goethite nanoparticles-containing rare earth (RE) under hydrogen flow are reported. Alumina and maghemite thin layers on particle surface were used to protect the goethite particles against sintering and oxidation, respectively. Al and RE additions were obtained by successive heterocoagulation reactions. Aluminum sulfate (10 at.% based on Fe) was dissolved in water and the pH adjusted to 12.5 with NaOH solution. Goethite particles were suspended in this solution and CO2 gas was blown into the slurry to neutralize it to a pH 8.5 or less. Particles were purified and dehydrated to effect transformation to alumina-coated hematite nanoparticles, which were re-suspended in aqueous solution in which RE sulfate (0-0.15 at.% based on Fe) has been dissolved, and the pH increased by ammonia aqueous solution addition. Resulted alumina-coated RE-doped hematite nanoparticles were reduced to metal at 450 degreesC/12 h under hydrogen flow and passivated with nitrogen-containing ethanol vapor at room temperature. Acicular monodispersed metallic nanoparticle systems were obtained and the presence of Al and RE were confirmed by induced-coupled plasma spectrometry analysis. X-ray diffraction, Mossbauer spectroscopy, and magnetization data are in agreement with the nanosized alpha-Fe core in a bcc structure, having a spinel structure, gammaFe(2)O(3), with thickness similar to1.5 run on particle surface. Main magnetic parameters showed saturation magnetization decreases and significant increasing in the coercive field with the RE composition increases. Magnetic properties of these particles, similar to40% smaller than those commercially available, suggest a decrease in the bit-size for high-density magnetic or magneto-optics recording media application. (C) 2004 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first main conclusion drawn from this dissertation concerns the amount of Pt deposited on the asymmetric layer of membrane produced by tape casting porosity shaping method. Three different amounts were investigated (0.15, 1.5 and 4.5 mg cm-2 ). The most optimal performance, based on H2 permeation performances, was attained when 1.5 mg cm-2 of Pt was deposited on the porous layer, resulting in a 0.642 mL min-1 cm-2 permeated H2 when 80% H2 in He was employed as the feed. Pt deposition method is influenced by the concentration of the Pt precursor, which results in different morphology of the catalyst. The second development focused on further optimization on tape casting membranes concerning the solvent employed for the Pt catalyst deposition. The same concentration of Pt was employed, depositing 1.5 mg cm-2 on the porous side of the membrane, but a mixture of acetone and water was employed as solvent. This mixture allowed the suppression of effects leading to poorly dispersed particles. As a result, it was possible to achieve 0.74 mL min-1 cm-2 at 750°C with 50% H2 in He. Lastly, first-ever permeation performance measurements into an innovative ceramic membrane type for hydrogen separation was investigated. In-depth research was done on a group of hierarchically-structured BaCe0.65Zr0.20Y0.15O3-δ(BCZY) - Gd0.2Ce0.8O2-δ(GDC) membranes produced by freeze casting porosity shaping method. Membranes were investigated observing the effect of deposition solvent and the effect of porous layer thickness. Employing a mixture of Acetone and water resulted in better hydrogen permeation at temperatures (T > 650°C), reaching 0.26 mL min-1 cm-2 at 750°C with 50% H2 in He. The reduction of porous layer thickness led to a hydrogen flow of 0.33 mL min-1 cm-2 , at 750°C with 50% H2 in He.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrogen peroxide was determined in oral antiseptic and bleach samples using a flow-injection system with amperometric detection. A glassy carbon electrode modified by electrochemical deposition of ruthenium oxide hexacyanoferrate was used as working electrode and a homemade Ag/AgCl (saturated KCl) electrode and a platinum wire were used as reference and counter electrodes, respectively. The electrocatalytic reduction process allowed the determination of hydrogen peroxide at 0.0 V. A linear relationship between the cathodic peak current and concentration of hydrogen peroxide was obtained in the range 10-5000 mu mol L(-1) with detection and quantification limits of 1.7 (S/N = 3) and 5.9 (S/N = 10) mu mol L(-1), respectively. The repeatability of the method was evaluated using a 500 mu mol L(-1) hydrogen peroxide solution, the value obtained being 1.6% (n = 14). A sampling rate of 112 samples h(-1) was achieved at optimised conditions. The method was employed for the quantification of hydrogen peroxide in two commercial samples and the results were in agreement with those obtained by using a recommended procedure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A flow-injection (FI) spectrophotometric procedure exploiting merging zones is proposed for the determination of azithromycin in pharmaceutical formulations. The method is based on the reaction of azithromycin with tetrachloro-phenzoquinone (p-chloranil) accelerated by hydrogen peroxide and conducted in a methanol medium, producing a purple-red color compound (lambda(max) = 540 nm). The FI system and the experimental conditions were optimized using a multivariate method. Beer's law is obeyed in a concentration range of 50 - 1600 mu g mL(-1) with an excellent correlation coefficient (r = 0.9998). The detection limit and the quantification limit were 6.6 and 22.1 mu g mL(-1), respectively. No interference was observed from the common excipients, and the recoveries were within 98.6 to 100.4%. The procedure was applied to the determination of azithromycin in pharmaceuticals with a high sampling rate (65 samples h(-1)). The results obtained by the proposed method were in good agreement with those obtained by the comparative method at 95% confidence level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple, rapid, and automated assay for hydrogen peroxide in pharmaceutical samples was developed by combining the multicommutation system with a chemiluminescence (CL) detector. The detection was performed using a spiral flow-cell reactor made from polyethylene tubing that was positioned in front of a photodiode. It allows the rapid mixing of CL reagent and analyte and simultaneous detection of the emitted light. The chemiluminescence was based on the reaction of luminol with hydrogen peroxide catalyzed by hexacyanoferrate(III). The feasibility of the flow system was ascertained by analyzing a set of pharmaceutical samples. A linear response within the range of 2.2-210 μmol l-1 H2O2 with a LD of 1.8 μmol l-1 H2O2 and coefficient of variations smaller than 0.8% for 1.0×10-5 mol l-1 and 6.8×10-5 mol l-1 hydrogen peroxide solutions (n=10) were obtained. Reagents consumption of 90 μg of luminol and 0.7 mg of hexacyanoferrate(III) per determination and sampling rate of 200 samples per hour were also achieved. Copyright © Taylor & Francis Group, LLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrogen peroxide is a powerful oxidant that finds application in several areas, but most particularly in the treatment of industrial wastewaters. The aim of the present study was to investigate the effects of applied potential and electrolyte flow conditions on the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor with a gas diffusion electrode (GDE). The electrolyses were performed in an aqueous acidic medium using a GDE constructed with conductive black graphite and polytetrafluoroethylene (80:20 w/w). Under laminar flow conditions (flow rate = 50 L/h), hydrogen peroxide was formed in a maximum yield of 414 mg/L after 2 h at -2.25 V vs Pt //Ag/AgCl (global rate constant = 3.1 mg/(L min); energy consumption = 22.1 kWh/kg). Under turbulent flow (300 L/h), the maximum yield obtained was 294 mg/L after 2 h at -1.75 V vs Pt//Ag/AgCl (global rate constant = 2.5 mg/ (L min); energy consumption = 30.1 kWh/kg).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid-core waveguides (LCWs), devices that constrain the emitted radiation minimizing losses during the transport, are an alternative to maximize the amount of detected radiation in luminescence. In this work, the performance of a LCW flow-cell was critically evaluated for chemiluminescence measurements, by using as model the oxidation of luminol by hydrogen peroxide or hypochlorite. An analytical procedure for hypochlorite determination was also developed, with linear response in the range 0.2-3.8 mg/L (2.7-51 mu mol/L), a detection limit estimated as 8 mu g/L (0.64 mu mol/L) at the 99.7% confidence level and luminol consumption of 50 mu g/determination. The coefficients of variation were 3.3% and 1.6% for 0.4 and 1.9 mg/L CIO(-), respectively, with a sampling rate of 164 determinations/h. The procedure was applied to the analysis of Dakin`s solution samples, yielding results in agreement with those obtained by iodometric titration at the 95% confidence level. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of optical detection methods in continuous flow microsystems can highly extend their range of application, as long as some negative effects derived from their scaling down can be minimized. Downsizing affects to a greater extent the sensitivity of systems based on absorbance measurements than the sensitivity of those based on emission ones. However, a careful design of the instrumental setup is needed to maintain the analytical features in both cases. In this work, we present the construction and evaluation of a simple miniaturized optical system, which integrates a novel flow cell configuration to carry out chemiluminescence (CL) measurements using a simple photodiode. It consists of a micro-mixer based on a vortex structure, which has been constructed by means of the low-temperature cofired ceramics (LTCC) technology. This mixer not only efficiently promotes the CL reaction due to the generated high turbulence but also allows the detection to be carried out in the same area, avoiding intensity signal losses. As a demonstration, a flow injection system has been designed and optimized for the detection of cobalt(H) in water samples. It shows a linear response between 2 and 20 mu M with a correlation of r > 0.993, a limit of detection of 1.1 mu M, a repeatability of RSD = 12.4 %, and an analysis time of 17 s. These results demonstrate the suitability of the proposal to the determination of compounds involved in CL reactions by means of an easily constructed versatile device based on low-cost instrumentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 40oW) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stable isotope composition of waters (delta H-2, delta O-18) can be used as a natural tracer of hydrologic processes in systems affected by acid mine drainage. We investigated the delta H-2 and delta O-18 values of pore waters from four oxidizing sulfidic mine tailings impoundments in different climatic regions of Chile (Piuquenes at La Andina with Alpine climate, Cauquenes and Caren at El Teniente with Mediterranean climate, and Talabre at the Chuquicamata deposit with hyperarid climate). No clear relationship was found between altitude and isotopic composition. The observed displacement of the tailings pore waters from the local meteoric water line toward higher delta O-18 values (by similar to +2% delta O-18 relative to delta H-2) is partly due to water-rock interaction processes, including hydration and O-isotope exchange with sulfates and Fe(III) oxyhydroxides produced by pyrite oxidation. In most tailings, from the saturated zone toward the surface, isotopically different zones can be distinguished. Zone I is characterized by an upward depletion of H-2 and O-18 in the pore waters from the saturated zone and the lowermost vadose zone, due to ascending diffused isotopically light water triggered by the constant loss of water vapor by evaporation at the surface. In zone II, the capillary flow of a mix of vapor and liquid water causes an evaporative isotopic enrichment in H-2 and O-18. At the top of the tailings in dry climate a zone III between the capillary zone and the surface contains isotopically light diffused and atmospheric water vapor. In temperate climates, the upper part of the profile is affected by recent rainfall and zone III may not differ isotopically from zone II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Northern Snake Range (Nevada) represents a spectacular example of a metamorphic core complex and exposes a complete section from the mylonitic footwall into the hanging wall of a fossil detachment system. Paired geochronological and stable isotopic data of mylonitic quartzite within the detachment footwall reveal that ductile deformation and infiltration of meteoric fluids occurred between 27 and 23 Ma. Ar-40/Ar-39 ages display complex recrystallization-cooling relationships but decrease systematically from 26.9 +/- 0.2 Ma at the top to 21.3 +/- 0.2 Ma at the bottom of footwall mylonite. Hydrogen isotope (delta D) values in white mica are very low (-150 to -145 %) within the top 80-90 m of detachment footwall, in contrast to values obtained from the deeper part of the section where values range from -77 to -64 %, suggesting that time-integrated interaction between rock and meteoric fluid was restricted to the uppermost part of the mylonitic footwall. Pervasive mica-water hydrogen isotope exchange is difficult to reconcile with models of Ar-40 loss during mylonitization solely by volume diffusion. Rather, we interpret the Ar-40/Ar-39 ages of white mica with low-delta D values to date syn-mylonitic hydrogen and argon isotope exchange, and we conclude that the hydrothermal system of the Northern Snake Range was active during late Oligocene (27-23 Ma) and has been exhumed by the combined effects of ductile strain, extensional detachment faulting, and erosion.