980 resultados para Hydrogen Quantum Electron Bohr


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bohr Model for the Hydrogen Atom's electron is discussed in detail, with a recapitulation of angular momentum and a detailed discussion of relevant units (out of the cgs system).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para a obtenção de grau de doutor em Bioquímica pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the introduction of nitrogen atoms upon the triplet excited state reactivity of 1,4-diaza-9-fluorenone (1) and 1,4-diaza-9-benz[b]fluorenone (2), in acetonitrile, was investigated employing the nanosecond laser flash photolysis technique. The intersystem crossing quantum yield (Φces) for 1 and 2 was determined using 9-fluorenone as a secondary standard (Φces= 0.48, in acetonitrile) and for both diazafluorenones a value of Φces= 0.28 was found. Quenching rate constants ranged from 8.17x10(4) L mol-1 s-1 (2-propanol) to 1.02x10(10) L mol-1 s-1 (DABCO) for 1,4-diaza-9-fluorenone and from 6.95x10(5) L mol-1 s-1 (2-propanol) to 5.94x10(9) L mol-1 s-1 (DABCO) for 1,4-diaza-9-benz[b]fluorenone, depending if the quenching process involves energy, hydrogen or electron transfer. A comparison between quenching rate constants for both diazaflurenones and the parent compound, i.e. 9-fluorenone, a ketone with lowest triple state of ππ* configuration, lead to the conclusion that the reactive triplet excited state for 1,4-diaza-9-fluorenone and 1,4-diaza-9-benz[b]fluorenone has ππ* configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Arbeit behandelt die numerische Untersuchung von Wasserstoff-Moleküldynamik in starken Laserfeldern. Im Speziellen wird die Struktur von Ionisationsspektren bei Einfach-Photoionisation betrachtet. Korrelationen zwischen Elektron- und Kernbewegung werden identifiziert und mit Effekten in den Energiespektren in Verbindung gebracht. Dabei wird stets auf die Integration der zeitabhängigen Schrödingergleichung zurückgegriffen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formulation of a suitable nonlocal model potential for electron exchange is presented, checked with electron-hydrogen and electron-helium scattering, and applied to the study of elastic and inelastic scattering and ionization of orthopositronium (Ps) by helium. The elastic scattering and the n=2 excitations of Ps are investigated using a three-Ps-state close-coupling approximation. The higher (n greater than or equal to 3) excitations and ionization of Ps atoms are treated in the framework of the Born approximation with present exchange. Calculations are reported of phase shifts and elastic, Ps excitation, and total cross sections. The present target elastic total cross section agrees well with experimental results at thermal to medium energies. [S1050-2947(99)04201-8].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of coronal leakage on concentration of hydrogen ions (pH) and calcium release of several calcium hydroxide pastes, over different periods of time. Material and Methods: Fifty extracted human mandibular central incisors (n=10) were instrumented up to the F2 instrument and assigned to the following intracanal dressing: G1- Calen, G2- Calen with 0.4% chlorhexidine (CHX), G3- Calcium hydroxide with camphorated paramonochlorophenol (CPMC) and glycerin, G4- Calen, but temporary filling material maintained during all test (positive control) and G5- Root canal without intracanal dressing (negative control). All groups were immersed in distilled water for 7 days. In sequence, the temporary filling materials were removed, except in controls groups. All specimens were individually mounted on a specific device and only its root again immersed in distilled water. Concentration of hydrogen ions and calcium release by calcium hydroxide pastes in distilled water were evaluated in 24h, 7, 14 and 28 days. The results were submitted to ANOVA test (p = 0.05). After 28 days, root canals from experimental groups were examined in SEM. Results: G1, G2, G3 and G4 presented similar pH values and calcium release and did not differ from each other (p>0.05), up to 7 days. After this time G1, G2 and G3 presented values lower values than G4 (p<0.05). In SEM analysis, calcium hydroxide residues were observed in all experimental groups. Conclusions: After 7 days, coronal leakage decreased the concentration of hydrogen ions and calcium ion release provided by all calcium hydroxide pastes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The remarkable advances in nanoscience and nanotechnology over the last two decades allow one to manipulate individuals atoms, molecules and nanostructures, make it possible to build devices with only a few nanometers, and enhance the nano-bio fusion in tackling biological and medical problems. It complies with the ever-increasing need for device miniaturization, from magnetic storage devices, electronic building blocks for computers, to chemical and biological sensors. Despite the continuing efforts based on conventional methods, they are likely to reach the fundamental limit of miniaturization in the next decade, when feature lengths shrink below 100 nm. On the one hand, quantum mechanical efforts of the underlying material structure dominate device characteristics. On the other hand, one faces the technical difficulty in fabricating uniform devices. This has posed a great challenge for both the scientific and the technical communities. The proposal of using a single or a few organic molecules in electronic devices has not only opened an alternative way of miniaturization in electronics, but also brought up brand-new concepts and physical working mechanisms in electronic devices. This thesis work stands as one of the efforts in understanding and building of electronic functional units at the molecular and atomic levels. We have explored the possibility of having molecules working in a wide spectrum of electronic devices, ranging from molecular wires, spin valves/switches, diodes, transistors, and sensors. More specifically, we have observed significant magnetoresistive effect in a spin-valve structure where the non-magnetic spacer sandwiched between two magnetic conducting materials is replaced by a self-assembled monolayer of organic molecules or a single molecule (like a carbon fullerene). The diode behavior in donor(D)-bridge(B)-acceptor(A) type of single molecules is then discussed and a unimolecular transistor is designed. Lastly, we have proposed and primarily tested the idea of using functionalized electrodes for rapid nanopore DNA sequencing. In these studies, the fundamental roles of molecules and molecule-electrode interfaces on quantum electron transport have been investigated based on first-principles calculations of the electronic structure. Both the intrinsic properties of molecules themselves and the detailed interfacial features are found to play critical roles in electron transport at the molecular scale. The flexibility and tailorability of the properties of molecules have opened great opportunity in a purpose-driven design of electronic devices from the bottom up. The results that we gained from this work have helped in understanding the underlying physics, developing the fundamental mechanism and providing guidance for future experimental efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used self-assembled purines and pyrimidines on planar gold surfaces and on gold-coated atomic force microscope (AFM) tips to directly probe intermolecular hydrogen bonds. Electron spectroscopy for chemical analysis (ESCA) and thermal programmed desorption (TPD) measurements of the molecular layers suggested monolayer coverage and a desorption energy of about 25 kcal/mol. Experiments were performed under water, with all four DNA bases immobilized on AFM tips and flat surfaces. Directional hydrogen-bonding interaction between the tip molecules and the surface molecules could be measured only when opposite base-pair coatings were used. The directional interactions were inhibited by excess nucleotide base in solution. Nondirectional van der Waals forces were present in all other cases. Forces as low as two interacting base pairs have been measured. With coated AFM tips, surface chemistry-sensitive recognition atomic force microscopy can be performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids) are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure.The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants.The structure-property-activity relationships (SPARs) correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs) obtained so far.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rate constants for the quenching of 1,3-indandione (1) triplet by olefins and by hydrogen and electron donors were obtained employing the laser flash photolysis technique in benzene solution. These rate constants ranged from 2.5x10(5) Lmol-1s-1 (for 2-propanol) to 5.9x10(9) Lmol-1s-1 (for DABCO). From the quenching rate constants by 1,3-cyclohexadiene, trans- and cis-stilbene a value between 49.3 and 52.4 kcal/mol was estimated for the energy of the triplet state of 1,3-indandione. The npi* character of this triplet state was evidenced by the quenching rate constants obtained when typical hydrogen donors were employed as quenchers. For 2-phenyl-1,3-indandione (2, R=phenyl) a fast Norrish type I reaction is operating which prevents the determination of kinetic and spectroscopic data of its triplet state.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The structures of 2-hydroxybenzamide(C7H7NO2) and 2-methoxybenzamide (C8H9NO2) have been determined in the gas-phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d,p)) predict four stable conformers for both 2-hydroxybenzamide and 2-methoxybenzamide. For both compounds, evidence for intramolecular hydrogen bonding is presented. In 2-hydroxybenzamide, the observed hydrogen bonded fragment is between the hydroxyl and carbonyl groups, while in 2-methoxybenzamide, the hydrogen bonded fragment is between one of the hydrogen atoms of the amide group and the methoxy oxygen atom.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present a systematic investigation of the nature and strength of the hydrogen bonding in HX···HX and CH3X…HX (X = Br, Cl and F) dimers using ab initio MP2/aug-cc-pVTZ calculations in the framework of the quantum theory of atoms in molecules (QTAIM) and electron localisation functions (ELFs) methods. The electron density of the complexes has been characterised, and the hydrogen bonding energy, as well as the QTAIM and ELF parameters, is consistent, providing deep insight into the origin of the hydrogen bonding in these complexes. It was found that in both linear and angular HX…HX and CH3X…HX dimers, F atoms form stronger HB than Br and Cl, but they need short (∼2 Å) X…HX contacts.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The PM3 semiempirical quantum-mechanical method was found to systematically describe intermolecular hydrogen bonding in small polar molecules. PM3 shows charge transfer from the donor to acceptor molecules on the order of 0.02-0.06 units of charge when strong hydrogen bonds are formed. The PM3 method is predictive; calculated hydrogen bond energies with an absolute magnitude greater than 2 kcal mol-' suggest that the global minimum is a hydrogen bonded complex; absolute energies less than 2 kcal mol-' imply that other van der Waals complexes are more stable. The geometries of the PM3 hydrogen bonded complexes agree with high-resolution spectroscopic observations, gas electron diffraction data, and high-level ab initio calculations. The main limitations in the PM3 method are the underestimation of hydrogen bond lengths by 0.1-0.2 for some systems and the underestimation of reliable experimental hydrogen bond energies by approximately 1-2 kcal mol-l. The PM3 method predicts that ammonia is a good hydrogen bond acceptor and a poor hydrogen donor when interacting with neutral molecules. Electronegativity differences between F, N, and 0 predict that donor strength follows the order F > 0 > N and acceptor strength follows the order N > 0 > F. In the calculations presented in this article, the PM3 method mirrors these electronegativity differences, predicting the F-H- - -N bond to be the strongest and the N-H- - -F bond the weakest. It appears that the PM3 Hamiltonian is able to model hydrogen bonding because of the reduction of two-center repulsive forces brought about by the parameterization of the Gaussian core-core interactions. The ability of the PM3 method to model intermolecular hydrogen bonding means reasonably accurate quantum-mechanical calculations can be applied to small biologic systems.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The accurate electron density and linear optical properties of L-histidinium hydrogen oxalate are discussed. Two high-resolution single crystal X-ray diffraction experiments were performed and compared with density functional calculations in the solid state as well as in the gas phase. The crystal packing and the hydrogen bond network are accurately investigated using topological analysis based on quantum theory of atoms in molecules, Hirshfeld surface analysis, and electrostatic potential mapping. The refractive indices are computed from couple perturbed Kohn-Sham calculations and measured experimentally. Moreover, distributed atomic polarizabilities are used to analyze the origin of the linear susceptibility in the crystal, in order to separate molecular and intermolecular causes. The optical properties are also correlated with the electron density distribution. This compound also offers the possibility to test the electron density building block approach for material science and different refinement schemes for accurate positions and displacement parameters of hydrogen atoms, in the absence of neutron diffraction data.