967 resultados para Hydrogen,laminar burning velocity,energy production,combustion,cellularity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current environmental and socio-economic situation promotes the development of carbon-neutral and sustainable solutions for energy supply. In this framework, the use of hydrogen has been largely indicated as a promising alternative. However, safety aspects are of concern for storage and transportation technologies. Indeed, the current know-how promotes its transportation via pipeline as compressed gas. However, the peculiar properties of hydrogen make the selection of suitable materials challenging. For these reasons, dilution with less reactive species has been considered a short and medium solution. As a way of example, methane-hydrogen mixtures are currently transported via pipelines. In this case, the hydrogen content is limited to 20% in volume, thus keeping the dependence on natural gas sources. On the contrary, hydrogen can be conveniently transported by mixing it with carbon dioxide deriving from carbon capture and storage technologies. In this sense, the interactions between hydrogen and carbon dioxide have been poorly studied. In particular, the effects of composition and operative conditions in the case of accidental release or for direct use in the energy supply chain are unknown. For these reasons, the present work was devoted to the characterization of the chemical phenomena ruling the system. To this aim, laminar flames containing hydrogen and carbon dioxide in the air were investigated experimentally and numerically. Different detailed kinetic mechanisms largely validated were considered at this stage. Significant discrepancies were observed among numerical and experimental data, especially once a fuel consisting of 40%v of hydrogen was studied. This deviation was attributed to the formation of a cellular flame increasing the overall reactivity. Hence, this observation suggests the need for combined models accounting for peculiar physical phenomena and detailed kinetic mechanisms characterizing the hydrogen-containing flames.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El agotamiento, la ausencia o, simplemente, la incertidumbre sobre la cantidad de las reservas de combustibles fósiles se añaden a la variabilidad de los precios y a la creciente inestabilidad en la cadena de aprovisionamiento para crear fuertes incentivos para el desarrollo de fuentes y vectores energéticos alternativos. El atractivo de hidrógeno como vector energético es muy alto en un contexto que abarca, además, fuertes inquietudes por parte de la población sobre la contaminación y las emisiones de gases de efecto invernadero. Debido a su excelente impacto ambiental, la aceptación pública del nuevo vector energético dependería, a priori, del control de los riesgos asociados su manipulación y almacenamiento. Entre estos, la existencia de un innegable riesgo de explosión aparece como el principal inconveniente de este combustible alternativo. Esta tesis investiga la modelización numérica de explosiones en grandes volúmenes, centrándose en la simulación de la combustión turbulenta en grandes dominios de cálculo en los que la resolución que es alcanzable está fuertemente limitada. En la introducción, se aborda una descripción general de los procesos de explosión. Se concluye que las restricciones en la resolución de los cálculos hacen necesario el modelado de los procesos de turbulencia y de combustión. Posteriormente, se realiza una revisión crítica de las metodologías disponibles tanto para turbulencia como para combustión, que se lleva a cabo señalando las fortalezas, deficiencias e idoneidad de cada una de las metodologías. Como conclusión de esta investigación, se obtiene que la única estrategia viable para el modelado de la combustión, teniendo en cuenta las limitaciones existentes, es la utilización de una expresión que describa la velocidad de combustión turbulenta en función de distintos parámetros. Este tipo de modelos se denominan Modelos de velocidad de llama turbulenta y permiten cerrar una ecuación de balance para la variable de progreso de combustión. Como conclusión también se ha obtenido, que la solución más adecuada para la simulación de la turbulencia es la utilización de diferentes metodologías para la simulación de la turbulencia, LES o RANS, en función de la geometría y de las restricciones en la resolución de cada problema particular. Sobre la base de estos hallazgos, el crea de un modelo de combustión en el marco de los modelos de velocidad de la llama turbulenta. La metodología propuesta es capaz de superar las deficiencias existentes en los modelos disponibles para aquellos problemas en los que se precisa realizar cálculos con una resolución moderada o baja. Particularmente, el modelo utiliza un algoritmo heurístico para impedir el crecimiento del espesor de la llama, una deficiencia que lastraba el célebre modelo de Zimont. Bajo este enfoque, el énfasis del análisis se centra en la determinación de la velocidad de combustión, tanto laminar como turbulenta. La velocidad de combustión laminar se determina a través de una nueva formulación capaz de tener en cuenta la influencia simultánea en la velocidad de combustión laminar de la relación de equivalencia, la temperatura, la presión y la dilución con vapor de agua. La formulación obtenida es válida para un dominio de temperaturas, presiones y dilución con vapor de agua más extenso de cualquiera de las formulaciones previamente disponibles. Por otra parte, el cálculo de la velocidad de combustión turbulenta puede ser abordado mediante el uso de correlaciones que permiten el la determinación de esta magnitud en función de distintos parámetros. Con el objetivo de seleccionar la formulación más adecuada, se ha realizado una comparación entre los resultados obtenidos con diversas expresiones y los resultados obtenidos en los experimentos. Se concluye que la ecuación debida a Schmidt es la más adecuada teniendo en cuenta las condiciones del estudio. A continuación, se analiza la importancia de las inestabilidades de la llama en la propagación de los frentes de combustión. Su relevancia resulta significativa para mezclas pobres en combustible en las que la intensidad de la turbulencia permanece moderada. Estas condiciones son importantes dado que son habituales en los accidentes que ocurren en las centrales nucleares. Por ello, se lleva a cabo la creación de un modelo que permita estimar el efecto de las inestabilidades, y en concreto de la inestabilidad acústica-paramétrica, en la velocidad de propagación de llama. El modelado incluye la derivación matemática de la formulación heurística de Bauwebs et al. para el cálculo de la incremento de la velocidad de combustión debido a las inestabilidades de la llama, así como el análisis de la estabilidad de las llamas con respecto a una perturbación cíclica. Por último, los resultados se combinan para concluir el modelado de la inestabilidad acústica-paramétrica. Tras finalizar esta fase, la investigación se centro en la aplicación del modelo desarrollado en varios problemas de importancia para la seguridad industrial y el posterior análisis de los resultados y la comparación de los mismos con los datos experimentales correspondientes. Concretamente, se abordo la simulación de explosiones en túneles y en contenedores, con y sin gradiente de concentración y ventilación. Como resultados generales, se logra validar el modelo confirmando su idoneidad para estos problemas. Como última tarea, se ha realizado un analisis en profundidad de la catástrofe de Fukushima-Daiichi. El objetivo del análisis es determinar la cantidad de hidrógeno que explotó en el reactor número uno, en contraste con los otros estudios sobre el tema que se han centrado en la determinación de la cantidad de hidrógeno generado durante el accidente. Como resultado de la investigación, se determinó que la cantidad más probable de hidrogeno que fue consumida durante la explosión fue de 130 kg. Es un hecho notable el que la combustión de una relativamente pequeña cantidad de hidrogeno pueda causar un daño tan significativo. Esta es una muestra de la importancia de este tipo de investigaciones. Las ramas de la industria para las que el modelo desarrollado será de interés abarca la totalidad de la futura economía de hidrógeno (pilas de combustible, vehículos, almacenamiento energético, etc) con un impacto especial en los sectores del transporte y la energía nuclear, tanto para las tecnologías de fisión y fusión. ABSTRACT The exhaustion, absolute absence or simply the uncertainty on the amount of the reserves of fossil fuels sources added to the variability of their prices and the increasing instability and difficulties on the supply chain are strong incentives for the development of alternative energy sources and carriers. The attractiveness of hydrogen in a context that additionally comprehends concerns on pollution and emissions is very high. Due to its excellent environmental impact, the public acceptance of the new energetic vector will depend on the risk associated to its handling and storage. Fromthese, the danger of a severe explosion appears as the major drawback of this alternative fuel. This thesis investigates the numerical modeling of large scale explosions, focusing on the simulation of turbulent combustion in large domains where the resolution achievable is forcefully limited. In the introduction, a general description of explosion process is undertaken. It is concluded that the restrictions of resolution makes necessary the modeling of the turbulence and combustion processes. Subsequently, a critical review of the available methodologies for both turbulence and combustion is carried out pointing out their strengths and deficiencies. As a conclusion of this investigation, it appears clear that the only viable methodology for combustion modeling is the utilization of an expression for the turbulent burning velocity to close a balance equation for the combustion progress variable, a model of the Turbulent flame velocity kind. Also, that depending on the particular resolution restriction of each problem and on its geometry the utilization of different simulation methodologies, LES or RANS, is the most adequate solution for modeling the turbulence. Based on these findings, the candidate undertakes the creation of a combustion model in the framework of turbulent flame speed methodology which is able to overcome the deficiencies of the available ones for low resolution problems. Particularly, the model utilizes a heuristic algorithm to maintain the thickness of the flame brush under control, a serious deficiency of the Zimont model. Under the approach utilized by the candidate, the emphasis of the analysis lays on the accurate determination of the burning velocity, both laminar and turbulent. On one side, the laminar burning velocity is determined through a newly developed correlation which is able to describe the simultaneous influence of the equivalence ratio, temperature, steam dilution and pressure on the laminar burning velocity. The formulation obtained is valid for a larger domain of temperature, steam dilution and pressure than any of the previously available formulations. On the other side, a certain number of turbulent burning velocity correlations are available in the literature. For the selection of the most suitable, they have been compared with experiments and ranked, with the outcome that the formulation due to Schmidt was the most adequate for the conditions studied. Subsequently, the role of the flame instabilities on the development of explosions is assessed. Their significance appears to be of importance for lean mixtures in which the turbulence intensity remains moderate. These are important conditions which are typical for accidents on Nuclear Power Plants. Therefore, the creation of a model to account for the instabilities, and concretely, the acoustic parametric instability is undertaken. This encloses the mathematical derivation of the heuristic formulation of Bauwebs et al. for the calculation of the burning velocity enhancement due to flame instabilities as well as the analysis of the stability of flames with respect to a cyclic velocity perturbation. The results are combined to build a model of the acoustic-parametric instability. The following task in this research has been to apply the model developed to several problems significant for the industrial safety and the subsequent analysis of the results and comparison with the corresponding experimental data was performed. As a part of such task simulations of explosions in a tunnel and explosions in large containers, with and without gradient of concentration and venting have been carried out. As a general outcome, the validation of the model is achieved, confirming its suitability for the problems addressed. As a last and final undertaking, a thorough study of the Fukushima-Daiichi catastrophe has been carried out. The analysis performed aims at the determination of the amount of hydrogen participating on the explosion that happened in the reactor one, in contrast with other analysis centered on the amount of hydrogen generated during the accident. As an outcome of the research, it was determined that the most probable amount of hydrogen exploding during the catastrophe was 130 kg. It is remarkable that the combustion of such a small quantity of material can cause tremendous damage. This is an indication of the importance of these types of investigations. The industrial branches that can benefit from the applications of the model developed in this thesis include the whole future hydrogen economy, as well as nuclear safety both in fusion and fission technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The progressive depletion of fossil fuels and their high contribution to the energy supply in this modern society forces that will be soon replaced by renewable fuels. But the dispersion and alternation of renewable energy production also undertake to reduce their costs to use as energy storage and hydrogen carrier. It is necessary to develop technologies for hydrogen production from all renewable energy storage technologies and the development of energy production from hydrogen fuel cells and cogeneration and tri generation systems. In order to propel this technological development discussed where the hydrogen plays a key role as energy storage and renewable energy, the National Centre of Hydrogen and Fuel Cell Technology Experimentation in Spain equipped with installations that enable scientific and technological design, develop, verify, certify, approve, test, measure and, more importantly, the facility ensures continuous operation for 24 hours a day, 365 days year. At the same time, the system is scalable so as to allow continuous adaptation of new technologies are developed and incorporated into the assembly to verify integration at the same time it checks the validity of their development. The transformation sector can be said to be the heart of the system, because without neglecting the other sectors, this should prove the validity of hydrogen as a carrier - energy storage are important efforts that have to do to demonstrate the suitability of fuel cells or internal combustion systems to realize the energy stored in hydrogen at prices competitive with conventional systems. The multiple roles to meet the fuel cells under different conditions of operation require to cover their operating conditions, many different sizes and applications. The fourth area focuses on integration is an essential complement within the installation. We must integrate not only the electricity produced, but also hydrogen is used and the heat generated in the process of using hydrogen energy. The energy management in its three forms: hydrogen chemical, electrical and thermal integration requires complicated and require a logic and artificial intelligence extremes to ensure maximum energy efficiency at the same time optimum utilization is achieved. Verification of the development and approval in the entire production system and, ultimately, as a demonstrator set to facilitate the simultaneous evolution of production technology, storage and distribution of hydrogen fuel cells has been assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the end of the 1990s the stock breeding in the Europe was suffering from the animal disease epidemics such as Bovine spongiform encephalopathy (BSE) and foot –and mouth disease. The European Union (EU) tackled to this problem by tightening the legislation of animal by-products. At this point, rendering and fat producing industries faces new challenges, which they have to cope with in a way of trying to find alternatives to their products (animal fats and meat and bone meal). One of the most promising alternatives to utilize these products was to use them in energy production purposes. The purpose of the Thesis was to examine the utilization possibilities of Meat and bone meal (MBM) for energy production. The first part of the Thesis consists of theory part. The theory part includes evaluation of basic properties of MBM as a fertilizer and as a fuel, legislative evaluation and evaluation of different burning techniques. The second part of the Thesis consists of burning tests in Energy laboratory of LUT with different mixtures of peat and MBM. The purpose of the burning tests was to identify co-firing possibilities of peat and MBM and emission- and ash properties for peat and MBM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract AT-30-1-Gen-366."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modeling of metal dust explosion phenomenon is important in order to safeguard industries from potential accidents. A key parameter of these models is the burning velocity, which represents the consumption rate of the reactants by the flame front, during the combustion process. This work is focused on the experimental determination of aluminium burning velocity, through an alternative method, called "Direct method". The study of the methods used and the results obtained is preceded by a general analysis on dust explosion phenomenon, flame propagation phenomenon, characteristics of the metals combustion process and standard methods for determining the burning velocity. The “Direct method” requires a flame propagating through a tube recorded by high-speed cameras. Thus, the flame propagation test is carried out inside a vertical prototype made of glass. The study considers two optical technique: the direct visualization of the light emitted by the flame and the Particle Image Velocimetry (PIV) technique. These techniques were used simultaneously and allow the determination of two velocities: the flame propagation velocity and the flow velocity of the unburnt mixture. Since the burning velocity is defined by these two quantities, its direct determination is done by substracting the flow velocity of the fresh mixture from the flame propagation velocity. The results obtained by this direct determination, are approximated by a linear curve and different non-linear curves, which show a fluctuating behaviour of burning velocity. Furthermore, the burning velocity is strongly affected by turbulence. Turbulence intensity can be evaluated from PIV technique data. A comparison between burning velocity and turbulence intensity highlighted that both have a similar trend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Mecânica Especialização em Concepção e Produção

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] Anaerobic microbial diversity encloses a very high potential that can be used for biotechnological applications. This potential is still largely unexplored, since the majority of the microorganisms in Nature are unknown or poorly characterized. This work is focused on the study of novel anaerobic microorganisms that participate in the metabolism of lipids, long chain fatty acids (LCFA) and glycerol, with the main goal of producing valuable energy-rich organic compounds. For that, conventional anaerobic culturing procedures were combined with continuous bioreactors operation and allied to microbial ecology approaches. Two main examples of the work performed will be presented. (...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rebound is the extent to which improvements in energy efficiency fail to translate fully into reductions in energy use because of the implicit fall in the price of energy, when measured in efficiency units. This paper discusses aspects of the rebound effect that are introduced once energy is considered as a domestically produced commodity. A partial equilibrium approach is adopted in order to incorporate both energy use and production in a conceptually tractable way. The paper explores analytically two interesting results revealed in previous numerical simulations. The first is the possibility that energy use could fall by more than the implied improvement in efficiency. This corresponds to negative rebound. The second is the finding that the short-run rebound value can be greater than the corresponding long-run value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy system of Russia is the world's fourth largest measured by installed power. The largest are that of the the United States of America, China and Japan. After 1990, the electricity consumption decreased as a result of the Russian industry crisis. The vivid economic growth during the latest few years explains the new increase in the demand for energy resources within the State. In 2005 the consumption of electricity achieved the maximum level of 1990 and continues to growth. In the 1980's, the renewal of power facilities was already very slow and practically stopped in the 1990's. At present, the energy system can be very much characterized as outdated, inefficient and uneconomic because of the old equipment, non-effective structure and large losses in the transmission lines. The aim of Russia's energy reform, which was started in 2001, is to achieve a market based energy policy by 2011. This would thus remove the significantly state-controlled monopoly in Russia's energy policy. The reform will stimulateto decrease losses, improve the energy system and employ energy-saving technologies. The Russian energy system today is still based on the use of fossil fuels, and it almost totally ignores the efficient use of renewable sources such as wind, solar, small hydro and biomass, despite of their significant resources in Russia. The main target of this project is to consider opportunities to apply renewable energy production in the North-West Federal Region of Russia to partly solve the above mentioned problems in the energy system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työ käsittelee energian tuotannossa esiintyviä tärkeimpiä taloudellisia ja teknisiä riskejä sekä niiden hallitsemista energian tuottajan näkökulmasta. Ensiksi käsitellään yleisesti riskienhallintaa, eri riskityyppejä ja esitetään periaatteellinen riskienhallintaprosessi. Sen jälkeen tarkastellaan energiamarkkinoiden nykytilannetta lähinnä Pohjoismaiden tasolla ja verrataan sitä aikaisempaan tilanteeseen energian tuottajan kannalta. Tämä siksi, että energiamarkkinoiden vapautuminen on muuttanut merkittävästi energian tuotantoon liittyviä taloudellisia riskejä, käytännössä lisännyt niitä. Pääpaino on energian tuotannossa esiintyvien olennaisten riskien tarkastelussa ja niiden hallitsemisessa. Ensin esitellään työn kannalta olennaiset riskit ja tekijät joista ne aiheutuvat. Jokainen riski ja sen aiheuttamat haitat liiketoiminnalle kuvataan lyhyesti. Sen jälkeen kiinnitetään huomiota asioihin, jotka ovat tyypillisiä energian tuotannolle ja aiheuttavat samalla erikoisvaatimuksia riskienhallinnalle. Sitten käydään läpi sopivat riskienhallinnan menetelmät, jotka ovat yleisesti käytössä energian tuotannossa, aiemmin esitetyille olennaisille riskeille. Esitetyistä riskienhallinta menetelmistä useimpia ei ole kohdistettu millekään yksittäiselle riskille, vaan monia niistä voidaan käyttää useammankin riskin hallintaan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, fossil fuels have always been the major sources of the modern energy production. However prices on these energy sources have been constantly increasing. The utilization of local biomass resources for energy production can substitute significant part of the required energy demand in different energy sectors. The introduction of the biomass usage can easily be started in the forest industry first as it possesses biomass in a large volume. The forest industry energy sector has the highest potential for the fast bioenergy development in the North-West Russia. Therefore, the question concerning rational and effective forest resources use is important today as well as the utilization of the forestry by-products. This work describes and analyzes the opportunities of utilising biomass, mainly, in the form of the wood by-products, for energy production processes in general, as well as for the northwest Russian forest industry conditions. The study also covers basic forest industry processes and technologies, so, the reader can get familiar with the information about the specific character of the biomass utilization. The work gives a comprehensive view on the northwest forest industry situation from the biomass utilisation point of view. By presenting existing large-scale sawmills and pulp and paper mills the work provides information for the evaluation of the future development of CHP investments in the northwest Russian forest industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emission trading with greenhouse gases and green certificates are part if the climate policy the main target of which is reduce greenhouse gas emissions. The carbon dioxide and fine particle emissions of energy production in Helsinki Metropolitan area are calculated in this study. The analysis is made mainly by district heating point of view and the changes of the district heating network are assessed. Carbon dioxide emissions would be a bit higher, if the district heating network is expanded, but then the fine particle emissions would be much lower. Carbon dioxide emissions are roughly 10 % higher, if the district heating network is expanded at same rate as it has in past five years in the year 2030. The expansion of district heating network would decrease the fine particle emissions about 40 %. The cost of the expansion is allocated to be reduction cost of the fine particle emissions, which is considerably higher than the traditional reduction methods costs. The possible new nuclear plant would reduce the emissions considerably and the costs of the nuclear plant would be relatively low comparing the other energy production methods.