74 resultados para Hydrodistillation
Resumo:
The volatiles from Coriandrum sativum L., Satureja montana L., Santolina chamaecyparissus L., and Thymus vulgaris L. were isolated by hydrodistillation (essential oil) and supercritical fluid extraction (volatile oil). Their effect on seed germination and root and shoot growth of the surviving seedlings of four crops (Zea mays L., Triticum durum L., Pisum sativum L., and Lactuca sativa L.) and two weeds (Portulaca oleracea L. and Vicia sativa L.) was investigated and compared with those of two synthetic herbicides, Agrocide and Prowl. The volatile oils of thyme and cotton lavender seemed to be promising alternatives to the synthetic herbicides because they were the least injurious to the crop species. The essential oil of winter savory, on the other hand, affected both crop and weeds and can be appropriate for uncultivated fields.
Resumo:
Supercritical fluid extraction (SEE) of the volatile oil from Thymus vulgaris L. aerial flowering parts was performed under different conditions of pressure, temperature, mean particle size and CO2 flow rate and the correspondent yield and composition were compared with those of the essential oil isolated by hydrodistillation (HD). Both the oils were analyzed by GC and GC-MS and 52 components were identified. The main volatile components obtained were p-cymene (10.0-42.6% for SFE and 28.9-34.8% for HD), gamma-terpinene (0.8-6.9% for SFE and 5.1-7.0% for HD), linalool (2.3-5.3% for SFE and 2.8-3.1% for HD), thymol (19.5-40.8% for SFE and 35.4-41.6% for HD), and carvacrol (1.4-3.1% for SFE and 2.6-3.1% for HD). The main difference was found to be the relative percentage of thymoquinone (not found in the essential oil) and carvacryl methyl ether (1.0-1.2% for HD versus t-0.4 for SFE) which can explain the higher antioxidant activity, assessed by Rancimat test, of the SFE volatiles when compared with HD. Thymoquinone is considered a strong antioxidant compound.
Resumo:
The yield and chemical composition of essential oils from leaves of Ocimum selloi B. submitted to organic and mineral fertilization, obtained by hydrodistillation and supercritical fluid extraction (SFE) were compared. Essential oil was extracted in a Clevenger-type apparatus for 2 h 30 min and analyzed by GC-MS (Shimadzu, QP 5050-DB-5 capillary column - 30 m × 0.25 mm × 0.25 μm). Carrier gas was helium (1.7 ml/min); split ratio: 1:30. Temperature program: 50°C, rising to 180°C at 5°C/min, 180°C, rising to 280°C at 10°C/min. Injector temperature: 240°C and detector temperature: 230°C. Identifications of chemical compounds were made by matching their mass spectra and Kovat's indices (IK) values with known compounds reported in the literature. An Applied Separations-apparatus (Speed SFE, model 7071, Allentown, PA, EUA) was used for SFE extractions. They were conducted at pressure 200 bar and temperature 30°C (20 min in static mode and 40 min in dynamic mode). The supercritical CO2 flow rate was (6.8±0.7)×10-5 kg-CO2/s. The essential oil collected was immersed in ethylene glycol bath (5°C). The yield of essential oils obtained by SFE was larger than hydrodistillation in both fertilization treatments (279 and 333% for organic and mineral fertilizations, respectively). There were no differences between the fertilization treatments. The amount of the volatile components showed by GC-MS chromatogram was highest in the essential oil obtained by hydrodistillation than SFE. The main volatile constituents of the essential oils were trans-anethole (Hydrodistillation: organic - 52.4%; mineral - 55.0%/ SFE: Hydrodistillation - 62.8%; mineral - 66.8%) and methyl-chavicol (Hydrodistillation: organic - 37.3%; mineral - 38.3%/ SFE: organic - 8.4%; mineral - 4.3%). A reduction of methyl-chavicol relative proportion of essential oil obtained by SFE was observed. Cys-anethole, α-copaene, trans-cariofilene, germacrene-D, β-selinene, biciclogermacrene and spathulenol were expressed only in hydrodistillation. The extraction of essential oil by SFE presented larger yield of essential oil than hydrodistillation technique, presenting, however, these essential oils, different phytochemical profiles.
Resumo:
The essential oil from the leaves of Didymocarpus tomentosa was extracted by hydrodistillation and analyzed by GC/FID and GC/MS. Twenty five constituents amounting to 81.6% of the oil were identified. The leaf oil contained 78.7% sesquiterpenes and 2.9% monoterpenes. The leaf essential oil of D. tomentosa is a unique caryophyllene-rich natural source containing beta-caryophyllene, caryophyllene oxide, alpha-humulene and humulene oxide. The cytotoxic activity of the oil was determined by the BSLT using shrimp larva and the MTT assay using HeLa tumor cell line. The oil showed significant cytotoxic activity with LC50 and IC50 values of 12.26 and 11.4 mu g/mL, respectively. This is the first report on the chemical composition and cytotoxic activity of the essential oil of D. tomentosa.
Resumo:
Schinus terebinthifolius Raddi (Anacardiaceae) é uma espécie nativa da América do Sul com grande distribuição geográfica e muito comum em áreas de restinga. Sua grande plasticidade ecológica e boa interação biótica a torna espécie-chave na restauração de ambientes, porém, sua dominância pode estar relacionada à liberação de compostos alelopáticos. O objetivo do estudo foi avaliar o potencial alelopático dos extratos aquosos e óleos essenciais de folhas de Schinus terebinthifolius nas diferentes estações do ano sobre espécies-alvo nativas da restinga (Cereus fernambucensis, Erythroxylum ovalofolium, Pilosocereus arrabidae), uma espécie agrícola (Lactuca sativa) e nela própria (autoalelopatia). Para isso, suas folhas foram coletadas sazonalmente na restinga de Massambaba para o preparo dos extratos aquosos e extração dos óleos essenciais. Os extratos aquosos foram obtidos através da secagem das folhas a 60 C, trituração em liquidificador, diluição em água destilada e filtração, obtendo as concentrações de 5, 10, 15 e 20%. As extrações dos óleos foram realizadas através da hidrodestilação de 300 g de folhas frescas. A análise da composição dos óleos essenciais foi realizada através de cromatografia gasosa utilizando fibra SPME. O efeito fitotóxico foi avaliado nas espécies-alvo através da porcentagem de germinação, velocidade de germinação, crescimento aéreo e radicular, condutividade elétrica e massa seca. O efeito alelopático dos extratos aquosos foi observado em todas as espécies-alvo, principalmente sobre as espécies nativas. Esse efeito variou nas estações do ano de forma dose-dependente e espécie-específica. Os óleos essenciais de S. terebinthifolius também foram capazes de inibir a germinação e crescimento das espécies-alvo, e, da mesma forma que os extratos aquosos, esses efeitos variaram nas estações do ano e para cada espécie. Sugere-se que essas diferenças estejam relacionadas às fenofases de S. terebinthifolius e condições ambientais da restinga. Esse efeito fitotóxico, se comprovado em campo, pode restringir a utilização de S. terebinthifolius na restauração de ambientes.
Resumo:
Lavandula spp. belong to the family Lamiatae and some species are often used in popular medicine and have been used for centuries in a large number of medical applications and in aromatherapy. Although similar ethnobotanical properties of Lavandula spp., its essential oils, general chemical composition and therapeutic applications differ from different species. Lavandula stoechas L. subsps. luisieri (Rozeira) Rozeira and L. viridis L’Hér are endemic to the Iberian Peninsula, widespread in the South of Portugal, namely in Southern Alentejo and Algarve. The aim of our study was evaluate the chemical composition and toxicological and pharmacological activities of leaves essential oils of spontaneous plants of L. stoechas L. subsps. luisieri (Alentejo) and L. viridis (Algarve). The essential oils of these wild plants, collected in spring, were obtained by hydrodistillation in a Clevenger-type apparatus and its chemical composition was evaluated by GC/FID. The acute toxicity of essential oils was evaluated "in vitro" using brine shrimp (LC50) and "in vivo" using Swiss mice (DL50). The analgesic and anti-inflammatory pharmacological properties of L. stoechas subsp. luisieri essential oil were evaluated in mouse or rats by the Amour-Smith and carrageen-induced paw edema tests, respectively. Results showed important differences in chemical composition of essential oils from two species analyzed either to diversity and proportion of its constituents. The essentials oils showed citotoxicity against Artemia salina and a DL50 higher than 2000 mg/kg for mice. The analgesic and anti-inflammatory activities of essential oils were exhibit for the doses of 100 and 200 mg/kg.
Resumo:
Lavenders belong to the family Labiatae and represent some of the most popular medicinal plants of great economic importance. Their essential oils are important for the perfume, cosmetic, flavouring and pharmaceutical industries. However, despite its popularity, and the long tradition of use, biological properties of the various Lavandula species are not yet been well sustained by scientific or clinical studies and some available data being inconclusive and controversial [1]. Although Lavandula spp. have similar ethnobotanical properties, however, chemical composition and therapeutic uses differ from different species and main composition of essential oils showed differences with species and with the region were they grow [1,2,3]. L. stoechas L. subsps. luisieri (Rozeira) Rozeira. L. pedunculata (Mill.) Cav. and L. viridis L’Hér are endemic to the Iberian Peninsula, widespread in the South of Portugal, namely in Alentejo and Algarve. In our work, essential oils from the stems or leaves from wild grown plants of L. luisieri (Alentejo), L. pedunculata (Alentejo) and L. viridis (Algarve), were extracted by hydrodistillation and analyzed by GC-FID. Antimicrobial activity was evaluated by solid diffusion disk assay and minimal inhibitory concentration (MIC) against pathogenic Gram-positive and Gram-negative bacteria and food spoilage fungi.
Resumo:
Total phenol, hydroxycinnamic acid derivatives, flavone/flavonol and flavanones/dihydroflavonol contents of hydro-alcoholic extracts, obtained by sonication, from the aerial parts of Artemisia campestris L., Anthemis arvensis L., Haloxylon scoparium Pomel, Juniperus phoenicea L., Arbutus unedo L., Cytisus monspessulanus L., Thymus algeriensis Boiss et Reut, Zizyphus lotus L (Desf.) collected in Djebel Amour (Sahara Atlas, Algeria) were quantified by spectrophotometric methods. The chemical composition of the essential oils obtained by hydrodistillation from Artemisia campestris L. and Juniperus phoenicea I aerial parts were also evaluated by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). The antioxidant activity of the extracts and essential oils was assessed measuring the capacity for preventing lipid peroxidation using two lipidic substrates (egg yolk and liposomes), the capacity for scavenging DPPH, ABTS, superoxide anion radicals, hydroxyl radicals and peroxyl radicals. Anti-inflammatory activity was assessed by measuring the capacity for inhibiting lipoxygenase. Reducing power and chelating capacity were also assayed. The results showed different amounts of total phenols depending on the method used: A. campestris extract had the highest levels of total phenols when the measurement was made at lambda = 280 nm, whereas H. scoparium and A. unedo extracts showed the highest levels of total phenols with Folin-Ciocalteau. C. monspessulanus had the highest levels of flavones/flavonols and flavanones/dihydroflavonols. The essential oils of A. campestris and J. phoenicea were mainly constituted by alpha-pinene, beta-pinene and sabinene; and a-pinene, respectively. The methods used for assaying the capacity for preventing lipid peroxidation revealed to be inadequate for extracts due to the great interferences detected. The essential oils were more active than the generality of extracts for scavenging peroxyl radicals and for inhibiting lipoxygenase, whereas A. unedo extract was the most active for scavenging ABTS, DPPH, superoxide anion radicals and it also had the best reducing capacity. In a general way, the great majority of the antioxidant activities correlated well with the phenol content although such correlation was not so clear with the flavonoid content. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Aims: Thymus species are wild species mostly found in the arid lands of Portugal. Possible antimicrobial properties of Thymus essential oils have been investigated. The chemical composition of the essential oils and the antimicrobial activity of Thymus mastichina (L) L. subsp. mastichina , T. camphoratus and T. lotocephalus from different regions of Portugal were analysed. Methods and Results: Hydrodistillation was used to isolate the essential oils and the chemical analyses were performed by gas chromatography (GC) and GC coupled to mass spectrometry. The antimicrobial activity was tested by the disc agar diffusion technique against Candida albicans , Escherichia coli , Listeria monocytogenes , Proteus mirabilis , Salmonella spp. and Staphylococcus aureus . Pure linalool, 1,8-cineole and a mixture (1:1) of these compounds were included. Linalool, 1,8-cineole or linalool/1,8-cineole and linalool/1,8-cineole/linalyl acetate were the major components of the essential oils, depending on the species or sampling place. The essential oils isolated from the Thymus species studied demonstrated antimicrobial activity but the micro-organisms tested had significantly different sensitivities. Conclusions: The antimicrobial activity of essential oils may be related to more than one component. Significance and Impact of the Study: Portuguese endemic species of Thymus can be used for essential oil production for food spoilage control, cosmetics and pharmaceutical use. Further studies will be required to elucidate the cell targets of the essential oil components.
Resumo:
A discussion of the most interesting results obtained in our laboratories, during the supercritical CO(2) extraction of bioactive compounds from microalgae and volatile oils from aromatic plants, was carried out. Concerning the microalgae, the studies on Botryococcus braunii and Chlorella vulgaris were selected. Hydrocarbons from the first microalgae, which are mainly linear alkadienes (C(23)-C(31)) with an odd number of carbon atoms, were selectively extracted at 313 K increasing the pressure up to 30.0 MPa. These hydrocarbons are easily extracted at this pressure, since they are located outside the cellular walls. The extraction of carotenoids, mainly canthaxanthin and astaxanthin, from C. vulgaris is more difficult. The extraction yield of these components at 313 K and 35.0 MPa increased with the degree of crushing of the microalga, since they are not extracellular. On the other hand, for the extraction of volatile oils from aromatic plants, studies on Mentha pulegium and Satureja montana L were chosen. For the first aromatic plant, the composition of the volatile and essential oils was similar, the main components being the pulegone and menthone. However, this volatile oil contained small amounts of waxes, which content decreased with decreasing particle size of the plant matrix. For S. montana L it was also observed that both oils have a similar composition, the main components being carvacrol and thymol. The main difference is the relative amount of thymoquinone, which content can be 15 times higher in volatile oil. This oxygenated monoterpene has important biological activities. Moreover, experimental studies on anticholinesterase activity of supercritical extracts of S. montana were also carried out. The supercritical nonvolatile fraction, which presented the highest content of the protocatechuic, vanilic, chlorogenic and (+)-catechin acids, is the most promising inhibitor of the enzyme butyrylcholinesterase. In contrast, the Soxhlet acetone extract did not affect the activity of this enzyme at the concentrations tested. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
An overview of the studies carried out in our laboratories on supercritical fluid extraction (SFE) of volatile oils from seven aromatic plants: pennyroyal (Mentha pulegium L.), fennel seeds (Foeniculum vulgare Mill.), coriander (Coriandrum sativum L.), savory (Satureja fruticosa Beguinot), winter savory (Satureja montana L.), cotton lavender (Santolina chamaecyparisus) and thyme (Thymus vulgaris), is presented. A flow apparatus with a 1 L extractor and two 0.27 L separators was built to perform studies at temperatures ranging from 298 to 353 K and pressures up to 30.0 MPa. The best compromise between yield and composition compared with hydrodistillation (HD) was achieved selecting the optimum experimental conditions of extraction and fractionation. The major differences between HD and SFE oils is the presence of a small percentage of cuticular waxes and the relative amount of thymoquinone, an oxygenated monoterpene with important biological properties, which is present in the oils from thyme and winter savory. On the other hand, the modeling of our data on supercritical extraction of volatile oil from pennyroyal is discussed using Sovova's models. These models have been applied successfully to the other volatile oil extractions. Furthermore, other experimental studies involving supercritical CO2 carried out in our laboratories are also mentioned.
Resumo:
The leaves of the Pitanga bush (Eugenia uniflora L.) are considered to be effective against many diseases. Extracts from Pitanga leaves have been found to show pronounced anti-inflammatory action and to have antimicrobial and antifungal activities, among other properties. In this work, extracts from Pitanga leaves were obtained by hydrodistillation and by extraction with supercritical carbon dioxide (SC-CO(2)) at three conditions of temperature and pressure. In the SC-CO(2) extractions also were collected the components that are lost with the CO(2) in the exit of the system using Porapak-Q polymer trap. All extracts were analyzed by gas chromatography-mass spectrometry (GC-MS). Thirty-nine compounds were found in the extracts and twenty-six were identified. The main components identified in the extracts in decreasing quantitative order were: curzerene, germacrene B, C(15)H(20)O(2) and beta-elemene for hydrodistillation; C(15)H(20)O(2) and curzerene for SC-CO(2) extracts and 3-hexen-1-ol, curzerene, C(15)H(20)O(2), beta-elemene and germacrene B for SC-CO(2) extracts captured in Porapak-Q. PRACTICAL APPLICATIONS The natural extracts are a potential source of compounds possessing biological activities. They can be used in foods, pharmaceutics and cosmetics. Pitanga is an exotic fruit from Brazil and extracts from its leaves have been used against many diseases in Brazilian folk medicine. Supercritical extraction is an interesting process for the production of natural extracts because it is a clean process and the knowledge of composition of extracts is crucial for the identification of the probable active components.
Resumo:
Ocimum basilicum L., popularly known as sweet basil, is a Lamiaceae species whose essential oil is mainly composed of monoterpenes, sesquiterpenes and phenylpropanoids. The contents of these compounds can be affected by abiotic and biotic factors such as infections caused by viruses. The main goal of this research was an investigation of the effects of viral infection on the essential oil profile of common basil. Seeds of O. basilicum L. cv. Genovese were sowed and kept in a greenhouse. Plants presenting two pairs of leaves above the cotyledons were inoculated with an unidentified virus isolated from a field plant showing chlorotic yellow spots and foliar deformation. Essential oils of healthy and infected plants were extracted by hydrodistillation and analyzed by GCMS. Changes in essential oil composition due to viral infection were observed. Methyleugenol and p-cresol,2,6-di-tert-butyl were the main constituents. However, methyleugenol contents were significantly decreased in infected plants.
Resumo:
The essential oils isolated by hydrodistillation from trunk bark and leaves of Talauma ovata A. St. Hil. (Magnoliaceae), collected in four seasons, were analyzed by capillary GC and GC/MS. Altogether 52 components were identified, The oils were characterized by predominance of cyclic sesquiterpenes. The main components were linalool, trans-beta-guaiene, germaerene D, germacrene B, spathulenol, caryophyllene oxide, viridiflorol and alpha-endesmol. The content of individual components was variable during the year. All oils were screened against several strains of bacteria and yeasts, using the agar well-diffusion technique. The antimicrobial activity of oils showed strong dependence with the season. Significant activity was found for oils obtained in the spring and summer.
Resumo:
The production of volatile organic compounds (VOC) by plants is well known. However, few scientific groups have studied VOC produced by green, brown and red algae. Headspace collection of volatiles and solid phase microextraction, as well as the traditional extraction by hydrodistillation combined with analytical chromatographic techniques (i.e., GC-MS), have significantly improved the investigation of VOC from plants and algae. The major volatile compounds found in seaweeds are hydrocarbons, terpenes, phenols, alcohols, aldehydes, ketones, esters, fatty acids and halogen or sulfur-containing compounds. This article presents an overview of VOC isolated from and identified in marine macro-algae. Focus is given to non-halogenated and non-sulfur volatile compounds, as well as strategies to analyze and identify algal VOC by GC-MS.