999 resultados para Hydraulic control
Resumo:
Includes bibliography.
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The abandonment of less productive fields and agro-forest activities has occured in the last decades, interesting large mountain areas in all mediterranean basin. Until the fifties, agricultural practices dealt mainly with soil surface and surface runoff control systems. However, the apparent sustainability of soil use results often in contrast with historical documents, witnessing heavy hydrogeological instability, in naturally fragile areas. The research focused on the dynamics and effects of post-coltural land abandonment in a critical mountain area of the Reno River. The Reno River rappresents a typical Tuscan-Emilian Apennines Watershed where soil erosion occurs under very different conditions depending on interactions between land use, climate, geomorphology and lithology. Landslides are largely rappresented, due to the diffusion of clay hill slopes. Recent researches suggest that climatic variability will increase as a consequence of global climate change, resulting in greater frequency and intensity of extreme weather events, which could increase rates of erosion, landslides reactivations and diffusion of calanchive basins. As far as hill slopes are concerned, instability is today basically due to intrinsic factors, as the Apennine range is a rather young formation, in geological terms, and is mainly formed by sedimentary rocks with high occurrence of clays. Therefore landslides and rockfalls are very frequent, while surface soil erosion is generally low and anyway concentrated in the low Apennine, where intensive farming is still economically worth. The study, supported by GIS use, analyses the main fisical characteristics of the area and the historical changes of land use, and focalizes the dynamics of spontaneous reafforestation. Futhermore, the research studies the results of soil bioengineering and surface water control solutions for the restablishment of landslides occured in the last period. Infact soil bioengineering has been recently used in different situations in order to consolidate slopes and hillsides and prevent erosion; when applied, it gave good results, both in terms of engineering efficiency and vegetational development, expecially if combined with a good hydraulic control, thus proving to be an actual alternative to other techniques with heavier environmental impacts. Research into the specific site features and the use of proper plant species is vital to the success of bioengineering works.
Resumo:
Mode of access: Internet.
Resumo:
Over the recent years, development in mobile working machines has concentrated on reducing emissions owing to the tightening rules and needs to improve energy utilization and reduce power losses. This study focuses on energy utilization and regeneration in an electro-hydraulic forklift, which is a lifting equipment application. The study starts from the modelling and simulation of a hydraulic forklift. The energy regeneration from the potential energy of the load was studied. Also a flow-based electric motor speed control was suggested in this thesis instead of the throttle control method or the variable displacement pump control. Topics related to further development in the future are discussed. Finally, a summary and conclusions are presented.
Resumo:
The objective of the this research project is to develop a novel force control scheme for the teleoperation of a hydraulically driven manipulator, and to implement an ideal transparent mapping between human and machine interaction, and machine and task environment interaction. This master‘s thesis provides a preparatory study for the present research project. The research is limited into a single degree of freedom hydraulic slider with 6-DOF Phantom haptic device. The key contribution of the thesis is to set up the experimental rig including electromechanical haptic device, hydraulic servo and 6-DOF force sensor. The slider is firstly tested as a position servo by using previously developed intelligent switching control algorithm. Subsequently the teleoperated system is set up and the preliminary experiments are carried out. In addition to development of the single DOF experimental set up, methods such as passivity control in teleoperation are reviewed. The thesis also contains review of modeling of the servo slider in particular reference to the servo valve. Markov Chain Monte Carlo method is utilized in developing the robustness of the model in presence of noise.
Resumo:
The Laboratory of Intelligent Machine researches and develops energy-efficient power transmissions and automation for mobile construction machines and industrial processes. The laboratory's particular areas of expertise include mechatronic machine design using virtual technologies and simulators and demanding industrial robotics. The laboratory has collaborated extensively with industrial actors and it has participated in significant international research projects, particularly in the field of robotics. For years, dSPACE tools were the lonely hardware which was used in the lab to develop different control algorithms in real-time. dSPACE's hardware systems are in widespread use in the automotive industry and are also employed in drives, aerospace, and industrial automation. But new competitors are developing new sophisticated systems and their features convinced the laboratory to test new products. One of these competitors is National Instrument (NI). In order to get to know the specifications and capabilities of NI tools, an agreement was made to test a NI evolutionary system. This system is used to control a 1-D hydraulic slider. The objective of this research project is to develop a control scheme for the teleoperation of a hydraulically driven manipulator, and to implement a control algorithm between human and machine interaction, and machine and task environment interaction both on NI and dSPACE systems simultaneously and to compare the results.
Resumo:
Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.
Resumo:
The awareness and concern of our environment together with legislation have set more and more tightening demands for energy efficiency of non-road mobile machinery (NRMM). Integrated electro-hydraulic energy converter (IEHEC) has been developed in Lappeenranta University of Technology (LUT). The elimination of resistance flow, and the recuperation of energy makes it very efficient alternative. The difficulties of IEHEC machine to step to the market has been the requirement of one IEHEC machine per one actuator. The idea is to switch IEHEC between two actuators of log crane using fast on/off valves. The control system architecture is introduced. The system has been simulated in co-simulation using two different software. The simulated responses of pump-controlled system is compared to the responses of the conventional valve-controlled system.
Resumo:
Nowadays robots have made their way into real applications that were prohibitive and unthinkable thirty years ago. This is mainly due to the increase in power computations and the evolution in the theoretical field of robotics and control. Even though there is plenty of information in the current literature on this topics, it is not easy to find clear concepts of how to proceed in order to design and implement a controller for a robot. In general, the design of a controller requires of a complete understanding and knowledge of the system to be controlled. Therefore, for advanced control techniques the systems must be first identified. Once again this particular objective is cumbersome and is never straight forward requiring of great expertise and some criteria must be adopted. On the other hand, the particular problem of designing a controller is even more complex when dealing with Parallel Manipulators (PM), since their closed-loop structures give rise to a highly nonlinear system. Under this basis the current work is developed, which intends to resume and gather all the concepts and experiences involve for the control of an Hydraulic Parallel Manipulator. The main objective of this thesis is to provide a guide remarking all the steps involve in the designing of advanced control technique for PMs. The analysis of the PM under study is minced up to the core of the mechanism: the hydraulic actuators. The actuators are modeled and experimental identified. Additionally, some consideration regarding traditional PID controllers are presented and an adaptive controller is finally implemented. From a macro perspective the kinematic and dynamic model of the PM are presented. Based on the model of the system and extending the adaptive controller of the actuator, a control strategy for the PM is developed and its performance is analyzed with simulation.
Resumo:
Cover title.
Resumo:
"August 1973."
Resumo:
At head of title: Engineering and design.