993 resultados para Hybrid coatings


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main obstacle for the application of high quality diamond-like carbon (DLC) coatings has been the lack of adhesion to the substrate as the coating thickness is increased. The aim of this study was to improve the filtered pulsed arc discharge (FPAD) method. With this method it is possible to achieve high DLC coating thicknesses necessary for practical applications. The energy of the carbon ions was measured with an optoelectronic time-of-flight method. An in situ cathode polishing system used for stabilizing the process yield and the carbon ion energies is presented. Simultaneously the quality of the coatings can be controlled. To optimise the quality of the deposition process a simple, fast and inexpensive method using silicon wafers as test substrates was developed. This method was used for evaluating the suitability of a simplified arc-discharge set-up for the deposition of the adhesion layer of DLC coatings. A whole new group of materials discovered by our research group, the diamond-like carbon polymer hybrid (DLC-p-h) coatings, is also presented. The parent polymers used in these novel coatings were polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE). The energy of the plasma ions was found to increase when the anode-cathode distance and the arc voltage were increased. A constant deposition rate for continuous coating runs was obtained with an in situ cathode polishing system. The novel DLC-p-h coatings were found to be water and oil repellent and harder than any polymers. The lowest sliding angle ever measured from a solid surface, 0.15 ± 0.03°, was measured on a DLC-PDMS-h coating. In the FPAD system carbon ions can be accelerated to high energies (≈ 1 keV) necessary for the optimal adhesion (the substrate is broken in the adhesion and quality test) of ultra thick (up to 200 µm) DLC coatings by increasing the anode-cathode distance and using high voltages (up to 4 kV). An excellent adhesion can also be obtained with the simplified arc-discharge device. To maintain high process yield (5µm/h over a surface area of 150 cm2) and to stabilize the carbon ion energies and the high quality (sp3 fraction up to 85%) of the resulting coating, an in situ cathode polishing system must be used. DLC-PDMS-h coating is the superior candidate coating material for anti-soiling applications where also hardness is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wear resistant coatings were produced on a permanent mould cast MRI 230D Mg alloy by (a) PEO in silicate based electrolyte, (b) PEO in phosphate based electrolyte, (c) hybrid coatings of silicate PEO followed by laser surface alloying (LSA) with Al and Al(2)O(3), and (d) hybrid coatings of phosphate PEO followed by LSA with Al and Al(2)O(3). Microstructural characterization of the coatings was carried out by scanning electron microscopy (SEM) and X(ray diffraction. The tribological behavior of the coatings was investigated under dry sliding condition using linearly reciprocating ball-on-flat wear test. Both the PEO coatings exhibited a friction coefficient of about 0.8 and hybrid coatings exhibited a value of about 0.5 against the AISI 52100 steel ball as the friction partner, which were slightly reduced with the increase in applied load. The PEO coatings sustained the test without failure at 2 N load but failed at 5 N load due to micro-fracture caused by high contact stresses. The hybrid coatings did not get completely worn off at 2 N load but were completely removed exposing the substrate at 5 N load. The PEO coatings exhibited better wear resistance than the hybrid coatings and silicate PEO coatings exhibited better wear resistance than the phosphate PEO coatings. Both the PEO coatings melted/decomposed on laser irradiation and all the hybrid coatings exhibited similar microstructure and wear behavior irrespective of the nature of the primary PEO coating or laser energies. SEM examination of worn surfaces indicated abrasive wear combined with adhesive wear for all the specimens. The surface of the ball exhibited a discontinuous transfer layer after the wear test. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysiloxane hybrid films were deposited on stainless steel by dip-coating using a sol prepared by hydrolytic co-polycondensation of tetraethoxysilane (TEOS) and 3-methacryloxy propyltrimethoxysilane (MPTS), followed by radical polymerization of methacrylic moieties. The TEOS/MPTS ratio was chosen equal to 2 and the Ce/Si ratio varied between 0.01 and 0.1. The effects of cerium concentration and valence (Ce(III) and Ce (IV)) on the structural features of polysiloxane films were studied by X-ray photoelectron spectroscopy (XPS) and (29)Si nuclear magnetic resonance (NMR). The corrosion protection of stainless steel by the hybrid coatings was investigated by XPS, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves, after immersion in saline and acid solutions. The NMR results have shown for Ce(IV) doped films a high degree of polycondensation of up to 89%. Electrochemical analysis has evidenced that hybrid films with the lowest Ce concentration act as an efficient diffusion barrier by increasing the corrosion resistance and reducing the current densities up to 3 orders of magnitude compared to bare stainless steel. The analysis of structural effects induced by Ce(III) and Ce(IV) species, performed by XPS, indicates that the improved corrosion protection of Ce(IV) doped films might be mainly related to the enhanced polymerization of siloxane groups. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siloxane-polymethyl methacrylate hybrid films containing functionalized multiwall carbon nanotubes (CNTs) were deposited by dip-coating on carbon steel substrates from a sol prepared by radical polymerization of methyl methacrylate and 3-methacryloxy propyl-trimethoxysilane, followed by hydrolytic co-polycondensation of tetraethoxysilane. The correlation between the structural properties and corrosion protection efficiency was studied as a function of the molar ratio of nanotubes carbon to silicon, varied in the range between 0.1% and 5%. 29Si nuclear magnetic resonance and thermogravimetric measurements have shown that hybrids containing carbon nanotubes have a similar degree of polycondensation and thermal stability as the undoped matrix and exhibit and excellent adhesion to the substrate. Microscopy and X-ray photoelectron spectroscopy results revealed a very good dispersion of carbon nanotubes in the hybrid matrix and the presence of carboxylic groups allowing covalent bonding with the end-siloxane nodes. Potentiodynamic polarization curves and electrochemical impedance spectroscopy results demonstrate that CNTs containing coatings maintain the excellent corrosion protection efficiency of the hybrids, showing even a superior performance in acidic solution. The nanocomposite structure acts as efficient corrosion barrier, increasing the total impedance by 4 orders of magnitude and reducing the current densities by more than 3 orders of magnitude, compared to the bare steel electrode. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os revestimentos híbridos nanoestruturados apresentam um elevado potencial no âmbito da protecção anticorrosiva dos metais, prevendo-se que no futuro estes revestimentos possam, não só substituir os tratamentos à base de crómio usados na indústria do tratamento de superfícies metálicas para protecção anticorrosiva, como também evoluir para sistemas integrados multifuncionais que dispensem o pré-tratamento e sejam mais “amigos” do ambiente. O processo sol-gel usado para a obtenção destes revestimentos permite, através da combinação de diferentes precursores e da manipulação das condições de síntese “desenhar” e optimizar a estrutura química e a funcionalidade dos revestimentos nanoestruturados com o objectivo de obter as propriedades desejadas para uma determinada aplicação. O estudo apresentado no presente trabalho teve como objectivo principal a optimização de revestimentos híbridos nanoestruturados obtidos pelo processo sol-gel para a protecção anticorrosiva de uma liga de alumínio frequentemente utilizada na construção civil. Para alcançar este objectivo foram preparados diversos revestimentos híbridos nanoestruturados e aplicados na liga de alumínio EN AW-6063, cujo processo de síntese foi optimizado variando parâmetros como a composição, processo de cura e condições reaccionais sol-gel, visando a obtenção de revestimentos com propriedades anticorrosivas melhoradas. Posteriormente, foi feita uma avaliação do comportamento à corrosão dos revestimentos optimizados em diferentes condições corrosivas, individualmente e como parte integrante de um sistema de protecção anticorrosiva usualmente aplicado em ligas de alumínio para fins arquitecturais. No presente documento é apresentada uma revisão bibliográfica da aplicação deste tipo de revestimentos na protecção anticorrosiva, seguindo-se a descrição detalhada dos procedimentos experimentais do estudo, nomeadamente, os materiais e os procedimentos para obtenção e caracterização dos revestimentos estudados, a apresentação dos resultados obtidos no decurso do desenvolvimento experimental realizado, sua interpretação, discussão e as conclusões parciais mais relevantes. No final, resumem-se as principais conclusões obtidas no estudo e faz-se uma avaliação global da aplicabilidade dos revestimentos optimizados na protecção anticorrosiva de ligas de alumínio no âmbito da construção civil, e indicam-se necessidades de desenvolvimentos futuros.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tinplate is one of the most widely used food canning materials, however, there are significant problems related to the use of tinplate cans, such as alterations in sensory features affecting food quality and corrosion phenomena of the canning material. To avoid corrosion problems different methods have been used for the passivation of tinplate such protective lacquers or different kinds of corrosion inhibitors (chromate and dichromate). However, chromates and dichromates are extremely harmful to the environment and can cause carcinogenic tumors to humans. An option, protective coatings obtained by the sol-gel process, act as a physical barrier, which isolates the surface of metal protecting from the corrosive agents. The aim of this work is to study the influence of addition of cerium (IV) ions in the inorganic and organic part of sol-gel processing in the formation of hybrid coatings based on siloxane-PMMA on tin plate. The coatings were obtained by dip-coating technique and evaluated by open circuit and impedance measurements, linear polarization and polarization curves obtained in 3.5% NaCl solution. The results have clearly shown the improvement on the protective properties of the Ce 4+ modified film when added into the organic phase, which can be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. © 2009 by NACE International.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)