959 resultados para Hybrid classification
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.
Resumo:
The purpose of this paper was to evaluate attributes derived from fully polarimetric PALSAR data to discriminate and map macrophyte species in the Amazon floodplain wetlands. Fieldwork was carried out almost simultaneously to the radar acquisition, and macrophyte biomass and morphological variables were measured in the field. Attributes were calculated from the covariance matrix [C] derived from the single-look complex data. Image attributes and macrophyte variables were compared and analyzed to investigate the sensitivity of the attributes for discriminating among species. Based on these analyses, a rule-based classification was applied to map macrophyte species. Other classification approaches were tested and compared to the rule-based method: a classification based on the Freeman-Durden and Cloude-Pottier decomposition models, a hybrid classification (Wishart classifier with the input classes based on the H/a plane), and a statistical-based classification (supervised classification using Wishart distance measures). The findings show that attributes derived from fully polarimetric L-band data have good potential for discriminating herbaceous plant species based on morphology and that estimation of plant biomass and productivity could be improved by using these polarimetric attributes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Monitorar a condição de uso de toda a extensão das rodovias brasileiras é tarefa dispendiosa e demorada. Este trabalho trata de novas técnicas que permitem o levantamento da condição da superfície dos pavimentos rodoviários de forma ágil utilizando imagens hiperespectrais de sensor digital aeroembarcado. Nos últimos anos, um número crescente de imagens de alta resolução espacial tem surgido no mercado mundial com o aparecimento dos novos satélites e sensores aeroembarcados de sensoriamento remoto. Propõe-se uma metodologia para identificação dos pavimentos asfálticos e classificação das principais ocorrências dos defeitos na superfície do pavimento. A primeira etapa da metodologia é a identificação da superfície asfáltica na imagem, utilizando uma classificação híbrida baseada inicialmente em pixel e depois refinada por objetos. A segunda etapa da metodologia é a identificação e classificação das ocorrências dos principais defeitos nos pavimentos flexíveis que são observáveis nas imagens de alta resolução espacial. Esta última etapa faz uso intensivo das novas técnicas de classificação de imagens baseadas em objetos. O resultado final é a geração de índices da condição da superfície do pavimento a partir das imagens que possam ser comparados com os indicadores vigentes da condição da superfície do pavimento já normatizados pelos órgãos competentes no país.
Resumo:
A post classification change detection technique based on a hybrid classification approach (unsupervised and supervised) was applied to Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987, 2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National Park in the southern region of Haiti. Each image was classified individually into six land use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and barren land using unsupervised ISODATA and maximum likelihood supervised classifiers with the aid of field collected ground truth data collected in the field. Ground truth information, collected in the field in December 2007, and including equalized stratified random points which were visual interpreted were used to assess the accuracy of the classification results. The overall accuracy of the land classification for each image was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change detection technique was used to produce change images for 1987 to 2000, 1987 to 2004, and 2000 to 2004. It was found that significant changes in the land use/cover occurred over the 17- year period. The results showed increases in built up (from 10% to 17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed forest (from18 to 12%) were transformed into agriculture area or barren land. This study illustrated the continuing deforestation, land degradation and soil erosion in the region, which in turn is leading to decrease in vegetative cover. The study also showed the importance of Remote Sensing (RS) and Geographic Information System (GIS) technologies to estimate timely changes in the land use/cover, and to evaluate their causes in order to design an ecological based management plan for the park.
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
Prism is a modular classification rule generation method based on the ‘separate and conquer’ approach that is alternative to the rule induction approach using decision trees also known as ‘divide and conquer’. Prism often achieves a similar level of classification accuracy compared with decision trees, but tends to produce a more compact noise tolerant set of classification rules. As with other classification rule generation methods, a principle problem arising with Prism is that of overfitting due to over-specialised rules. In addition, over-specialised rules increase the associated computational complexity. These problems can be solved by pruning methods. For the Prism method, two pruning algorithms have been introduced recently for reducing overfitting of classification rules - J-pruning and Jmax-pruning. Both algorithms are based on the J-measure, an information theoretic means for quantifying the theoretical information content of a rule. Jmax-pruning attempts to exploit the J-measure to its full potential because J-pruning does not actually achieve this and may even lead to underfitting. A series of experiments have proved that Jmax-pruning may outperform J-pruning in reducing overfitting. However, Jmax-pruning is computationally relatively expensive and may also lead to underfitting. This paper reviews the Prism method and the two existing pruning algorithms above. It also proposes a novel pruning algorithm called Jmid-pruning. The latter is based on the J-measure and it reduces overfitting to a similar level as the other two algorithms but is better in avoiding underfitting and unnecessary computational effort. The authors conduct an experimental study on the performance of the Jmid-pruning algorithm in terms of classification accuracy and computational efficiency. The algorithm is also evaluated comparatively with the J-pruning and Jmax-pruning algorithms.
Resumo:
This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.
Resumo:
Power distribution automation and control are import-ant tools in the current restructured electricity markets. Unfortunately, due to its stochastic nature, distribution systems faults are hardly avoidable. This paper proposes a novel fault diagnosis scheme for power distribution systems, composed by three different processes: fault detection and classification, fault location, and fault section determination. The fault detection and classification technique is wavelet based. The fault-location technique is impedance based and uses local voltage and current fundamental phasors. The fault section determination method is artificial neural network based and uses the local current and voltage signals to estimate the faulted section. The proposed hybrid scheme was validated through Alternate Transient Program/Electromagentic Transients Program simulations and was implemented as embedded software. It is currently used as a fault diagnosis tool in a Southern Brazilian power distribution company.
Resumo:
In this paper, a framework for detection of human skin in digital images is proposed. This framework is composed of a training phase and a detection phase. A skin class model is learned during the training phase by processing several training images in a hybrid and incremental fuzzy learning scheme. This scheme combines unsupervised-and supervised-learning: unsupervised, by fuzzy clustering, to obtain clusters of color groups from training images; and supervised to select groups that represent skin color. At the end of the training phase, aggregation operators are used to provide combinations of selected groups into a skin model. In the detection phase, the learned skin model is used to detect human skin in an efficient way. Experimental results show robust and accurate human skin detection performed by the proposed framework.