985 resultados para Hybrid Heuristic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract This paper presents a hybrid heuristic{triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in di®erential evolution (DE), TE targets each individual in current population and attempts to replace it by a new better individual. However, the way of generating new individuals is di®erent. TE generates new individuals in a Nelder- Mead way, while the simplices used in TE is 1 or 2 dimensional. The proposed algorithm is very easy to use and e±cient for global optimization problems with continuous variables. Moreover, it requires only one (explicit) control parameter. Numerical results show that the new algorithm is comparable with DE for low dimensional problems but it outperforms DE for high dimensional problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the power allocation with fixed rate constraint problem in multi-carrier code division multiple access (MC-CDMA) networks, that has been solved through game theoretic perspective by the use of an iterative water-filling algorithm (IWFA). The problem is analyzed under various interference density configurations, and its reliability is studied in terms of solution existence and uniqueness. Moreover, numerical results reveal the approach shortcoming, thus a new method combining swarm intelligence and IWFA is proposed to make practicable the use of game theoretic approaches in realistic MC-CDMA systems scenarios. The contribution of this paper is twofold: (i) provide a complete analysis for the existence and uniqueness of the game solution, from simple to more realist and complex interference scenarios; (ii) propose a hybrid power allocation optimization method combining swarm intelligence, game theory and IWFA. To corroborate the effectiveness of the proposed method, an outage probability analysis in realistic interference scenarios, and a complexity comparison with the classical IWFA are presented. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Capacitated Location-Routing Problem (CLRP) is a NP-hard problem since it generalizes two well known NP-hard problems: the Capacitated Facility Location Problem (CFLP) and the Capacitated Vehicle Routing Problem (CVRP). The Multi-Depot Vehicle Routing Problem (MDVRP) is known to be a NP-hard since it is a generalization of the well known Vehicle Routing Problem (VRP), arising with one depot. This thesis addresses heuristics algorithms based on the well-know granular search idea introduced by Toth and Vigo (2003) to solve the CLRP and the MDVRP. Extensive computational experiments on benchmark instances for both problems have been performed to determine the effectiveness of the proposed algorithms. This work is organized as follows: Chapter 1 describes a detailed overview and a methodological review of the literature for the the Capacitated Location-Routing Problem (CLRP) and the Multi-Depot Vehicle Routing Problem (MDVRP). Chapter 2 describes a two-phase hybrid heuristic algorithm to solve the CLRP. Chapter 3 shows a computational comparison of heuristic algorithms for the CLRP. Chapter 4 presents a hybrid granular tabu search approach for solving the MDVRP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many large coal mining operations in Australia rely heavily on the rail network to transport coal from mines to coal terminals at ports for shipment. Over the last few years, due to the fast growing demand, the coal rail network is becoming one of the worst industrial bottlenecks in Australia. As a result, this provides great incentives for pursuing better optimisation and control strategies for the operation of the whole rail transportation system under network and terminal capacity constraints. This PhD research aims to achieve a significant efficiency improvement in a coal rail network on the basis of the development of standard modelling approaches and generic solution techniques. Generally, the train scheduling problem can be modelled as a Blocking Parallel- Machine Job-Shop Scheduling (BPMJSS) problem. In a BPMJSS model for train scheduling, trains and sections respectively are synonymous with jobs and machines and an operation is regarded as the movement/traversal of a train across a section. To begin, an improved shifting bottleneck procedure algorithm combined with metaheuristics has been developed to efficiently solve the Parallel-Machine Job- Shop Scheduling (PMJSS) problems without the blocking conditions. Due to the lack of buffer space, the real-life train scheduling should consider blocking or hold-while-wait constraints, which means that a track section cannot release and must hold a train until the next section on the routing becomes available. As a consequence, the problem has been considered as BPMJSS with the blocking conditions. To develop efficient solution techniques for BPMJSS, extensive studies on the nonclassical scheduling problems regarding the various buffer conditions (i.e. blocking, no-wait, limited-buffer, unlimited-buffer and combined-buffer) have been done. In this procedure, an alternative graph as an extension of the classical disjunctive graph is developed and specially designed for the non-classical scheduling problems such as the blocking flow-shop scheduling (BFSS), no-wait flow-shop scheduling (NWFSS), and blocking job-shop scheduling (BJSS) problems. By exploring the blocking characteristics based on the alternative graph, a new algorithm called the topological-sequence algorithm is developed for solving the non-classical scheduling problems. To indicate the preeminence of the proposed algorithm, we compare it with two known algorithms (i.e. Recursive Procedure and Directed Graph) in the literature. Moreover, we define a new type of non-classical scheduling problem, called combined-buffer flow-shop scheduling (CBFSS), which covers four extreme cases: the classical FSS (FSS) with infinite buffer, the blocking FSS (BFSS) with no buffer, the no-wait FSS (NWFSS) and the limited-buffer FSS (LBFSS). After exploring the structural properties of CBFSS, we propose an innovative constructive algorithm named the LK algorithm to construct the feasible CBFSS schedule. Detailed numerical illustrations for the various cases are presented and analysed. By adjusting only the attributes in the data input, the proposed LK algorithm is generic and enables the construction of the feasible schedules for many types of non-classical scheduling problems with different buffer constraints. Inspired by the shifting bottleneck procedure algorithm for PMJSS and characteristic analysis based on the alternative graph for non-classical scheduling problems, a new constructive algorithm called the Feasibility Satisfaction Procedure (FSP) is proposed to obtain the feasible BPMJSS solution. A real-world train scheduling case is used for illustrating and comparing the PMJSS and BPMJSS models. Some real-life applications including considering the train length, upgrading the track sections, accelerating a tardy train and changing the bottleneck sections are discussed. Furthermore, the BPMJSS model is generalised to be a No-Wait Blocking Parallel- Machine Job-Shop Scheduling (NWBPMJSS) problem for scheduling the trains with priorities, in which prioritised trains such as express passenger trains are considered simultaneously with non-prioritised trains such as freight trains. In this case, no-wait conditions, which are more restrictive constraints than blocking constraints, arise when considering the prioritised trains that should traverse continuously without any interruption or any unplanned pauses because of the high cost of waiting during travel. In comparison, non-prioritised trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available. Based on the FSP algorithm, a more generic algorithm called the SE algorithm is developed to solve a class of train scheduling problems in terms of different conditions in train scheduling environments. To construct the feasible train schedule, the proposed SE algorithm consists of many individual modules including the feasibility-satisfaction procedure, time-determination procedure, tune-up procedure and conflict-resolve procedure algorithms. To find a good train schedule, a two-stage hybrid heuristic algorithm called the SE-BIH algorithm is developed by combining the constructive heuristic (i.e. the SE algorithm) and the local-search heuristic (i.e. the Best-Insertion- Heuristic algorithm). To optimise the train schedule, a three-stage algorithm called the SE-BIH-TS algorithm is developed by combining the tabu search (TS) metaheuristic with the SE-BIH algorithm. Finally, a case study is performed for a complex real-world coal rail network under network and terminal capacity constraints. The computational results validate that the proposed methodology would be very promising because it can be applied as a fundamental tool for modelling and solving many real-world scheduling problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper investigates train scheduling problems when prioritised trains and non-prioritised trains are simultaneously traversed in a single-line rail network. In this case, no-wait conditions arise because the prioritised trains such as express passenger trains should traverse continuously without any interruption. In comparison, non-prioritised trains such as freight trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available, which is thought of as a relaxation of no-wait conditions. With thorough analysis of the structural properties of the No-Wait Blocking Parallel-Machine Job-Shop-Scheduling (NWBPMJSS) problem that is originated in this research, an innovative generic constructive algorithm (called NWBPMJSS_Liu-Kozan) is proposed to construct the feasible train timetable in terms of a given order of trains. In particular, the proposed NWBPMJSS_Liu-Kozan constructive algorithm comprises several recursively-used sub-algorithms (i.e. Best-Starting-Time-Determination Procedure, Blocking-Time-Determination Procedure, Conflict-Checking Procedure, Conflict-Eliminating Procedure, Tune-up Procedure and Fine-tune Procedure) to guarantee feasibility by satisfying the blocking, no-wait, deadlock-free and conflict-free constraints. A two-stage hybrid heuristic algorithm (NWBPMJSS_Liu-Kozan-BIH) is developed by combining the NWBPMJSS_Liu-Kozan constructive algorithm and the Best-Insertion-Heuristic (BIH) algorithm to find the preferable train schedule in an efficient and economical way. Extensive computational experiments show that the proposed methodology is promising because it can be applied as a standard and fundamental toolbox for identifying, analysing, modelling and solving real-world scheduling problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents a comprehensive mathematical model for open pit mine block sequencing problem which considers technical aspects of real-life mine operations. As the open pit block sequencing problem is an NP-hard, state-of-the-art heuristics algorithms, including constructive heuristic, local search, simulated annealing, and tabu search are developed and coded using MATLAB programming language. Computational experiments show that the proposed algorithms are satisfactory to solve industrial-scale instances. Numerical investigation and sensitivity analysis based on real-world data are also conducted to provide insightful and quantitative recommendations for mine schedulers and planners.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents a comprehensive mathematical formulation model for a short-term open-pit mine block sequencing problem, which considers nearly all relevant technical aspects in open-pit mining. The proposed model aims to obtain the optimum extraction sequences of the original-size (smallest) blocks over short time intervals and in the presence of real-life constraints, including precedence relationship, machine capacity, grade requirements, processing demands and stockpile management. A hybrid branch-and-bound and simulated annealing algorithm is developed to solve the problem. Computational experiments show that the proposed methodology is a promising way to provide quantitative recommendations for mine planning and scheduling engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

针对多品种批量生产类型,建立了调度约束的生产计划与调度集成优化模型。模型的目标函数是使总调整费用、库存费用及生产费用之和最小,约束函数包括库存平衡约束和生产能力约束,同时考虑了调度约束,即工序顺序约束和工件在单机上的加工能力约束,保证了计划可行性。该模型为两层混合整数规划模型,对其求解综合运用了遗传算法和启发式规则,提出了混合启发式求解算法。最后,针对某机床厂多品种批量生产类型车间进行了实例应用,对车间零件月份作业计划进行分解,得到各工段单元零件周作业计划,确定了零件各周生产批量与投产顺序。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse étudie une approche intégrant la gestion de l’horaire et la conception de réseaux de services pour le transport ferroviaire de marchandises. Le transport par rail s’articule autour d’une structure à deux niveaux de consolidation où l’affectation des wagons aux blocs ainsi que des blocs aux services représentent des décisions qui complexifient grandement la gestion des opérations. Dans cette thèse, les deux processus de consolidation ainsi que l’horaire d’exploitation sont étudiés simultanément. La résolution de ce problème permet d’identifier un plan d’exploitation rentable comprenant les politiques de blocage, le routage et l’horaire des trains, de même que l’habillage ainsi que l’affectation du traffic. Afin de décrire les différentes activités ferroviaires au niveau tactique, nous étendons le réseau physique et construisons une structure de réseau espace-temps comprenant trois couches dans lequel la dimension liée au temps prend en considération les impacts temporels sur les opérations. De plus, les opérations relatives aux trains, blocs et wagons sont décrites par différentes couches. Sur la base de cette structure de réseau, nous modélisons ce problème de planification ferroviaire comme un problème de conception de réseaux de services. Le modèle proposé se formule comme un programme mathématique en variables mixtes. Ce dernie r s’avère très difficile à résoudre en raison de la grande taille des instances traitées et de sa complexité intrinsèque. Trois versions sont étudiées : le modèle simplifié (comprenant des services directs uniquement), le modèle complet (comprenant des services directs et multi-arrêts), ainsi qu’un modèle complet à très grande échelle. Plusieurs heuristiques sont développées afin d’obtenir de bonnes solutions en des temps de calcul raisonnables. Premièrement, un cas particulier avec services directs est analysé. En considérant une cara ctéristique spécifique du problème de conception de réseaux de services directs nous développons un nouvel algorithme de recherche avec tabous. Un voisinage par cycles est privilégié à cet effet. Celui-ci est basé sur la distribution du flot circulant sur les blocs selon les cycles issus du réseau résiduel. Un algorithme basé sur l’ajustement de pente est développé pour le modèle complet, et nous proposons une nouvelle méthode, appelée recherche ellipsoidale, permettant d’améliorer davantage la qualité de la solution. La recherche ellipsoidale combine les bonnes solutions admissibles générées par l’algorithme d’ajustement de pente, et regroupe les caractéristiques des bonnes solutions afin de créer un problème élite qui est résolu de facon exacte à l’aide d’un logiciel commercial. L’heuristique tire donc avantage de la vitesse de convergence de l’algorithme d’ajustement de pente et de la qualité de solution de la recherche ellipsoidale. Les tests numériques illustrent l’efficacité de l’heuristique proposée. En outre, l’algorithme représente une alternative intéressante afin de résoudre le problème simplifié. Enfin, nous étudions le modèle complet à très grande échelle. Une heuristique hybride est développée en intégrant les idées de l’algorithme précédemment décrit et la génération de colonnes. Nous proposons une nouvelle procédure d’ajustement de pente où, par rapport à l’ancienne, seule l’approximation des couts liés aux services est considérée. La nouvelle approche d’ajustement de pente sépare ainsi les décisions associées aux blocs et aux services afin de fournir une décomposition naturelle du problème. Les résultats numériques obtenus montrent que l’algorithme est en mesure d’identifier des solutions de qualité dans un contexte visant la résolution d’instances réelles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a hybrid heuristic-based on the CGRASP and GENCAN methods-for finding approximate solutions for continuous global optimization problems subject to box constraints. Experimental results illustrate the relative effectiveness of CGRASP-GENCAN on a set of benchmark multimodal test functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a hybrid heuristic methodology that employs fuzzy logic for solving the AC transmission network expansion planning (AC-TEP) problem is presented. An enhanced constructive heuristic algorithm aimed at obtaining a significant quality solution for such complicated problems considering contingency is proposed. In order to indicate the severity of the contingency, 2 performance indices, namely the line flow performance index and voltage performance index, are calculated. An interior point method is applied as a nonlinear programming solver to handle such nonconvex optimization problems, while the objective function includes the costs of the new transmission lines as well as the real power losses. The performance of the proposed method is examined by applying it to the well-known Garver system for different cases. The simulation studies and result analysis demonstrate that the proposed method provides a promising way to find an optimal plan. Obtaining the best quality solution shows the capability and the viability of the proposed algorithm in AC-TEP. © Tübi̇tak..

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)