976 resultados para Humic fractions
Resumo:
In this work was studied the distribution of Cr, Ni, Cu, Cd and Pb in humic fractions with different molecular size. The HS were extracted from waters (AHS), surface sediments (HESS), interface water sediment (HSIS) and bottom sediment (HSBS) collected in the Anhumas surface water collection reservoir, located in the district of Araraquara - São Paulo State Brazil. The humic substances were extracted by procedures recommended by International Humic Substances Society (IHSS). After purification by dialysis, the humic substances were fractionated using a multistage tangential flow ultrafiltration system. The fractionation patterns of HS characterized a mass distribution relatively uniform among the fractions with different molecular sizes, with larger values in the fractions F-2 (20.8%) and F-4 (23.8%), Except for the ions Pb(II) and Cu(II), which presented relatively higher concentrations in the fractions F-2 and F-4, respectively. In general, chromium, nickel, cadmium and lead have similar distributions in the five fractions with larger and medium molecular sizes (F-1 to F-5). With relation to the mass distributions in the different humic substances fractions extracted from sediment samples collected at three depth, they presented 42-48% of HS in the fractions with larger molecular sizes (F-1 and F-2), 29-31% in the middle fractions (F-3 and F-4) and 13-20% in the fractions with smaller molecular sizes (F-5 and F-6). In general, the metallic ions presented distributions similar among the respective fractions F-1 to F-6, Exceptions for Pb(II) and M(II) in surface sediment with concentrations relatively smaller in the fractions F-2 and F-4, respectively,
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The accumulation and preservation of peat soils in Everglades freshwater marshes and mangrove swamps is an essential process in the ecological functioning of these ecosystems. Human intervention and climate change have modified nutrient dynamics and hydroperiod in the Everglades and peat loss due to such anthropogenic activities is evident. However, not much is known on the molecular level regarding the biogeochemical characteristics, which allow peat to be preserved in the Everglades. Lipid biomarkers trapped within or bound to humic-type structures can provide important geochemical information regarding the origin and microbial transformation of OM in peat. Four lipid fractions obtained from a Cladium peat, namely the freely extractable fraction and those associated with humin, humic acid, and fulvic acid fractions, showed clear differences in their molecular distribution suggesting different OM sources and structural and diagenetic states of the source material. Both, higher plant derived and microbial lipids were found in association with these humic-type substances. Most biomarker distributions suggest an increment in the microbial/terrestrial lipid ratio from the free to humin to humic to fulvic fractions. Microbial reworking of lipids, and the incorporation of microbial biomarkers into the humic-type fractions was evident, as well as the preservation of diagenetic byproducts. The lipid distribution associated with the fulvic acids suggests a high degree of microbial reworking for this fraction. Evidence for this 3D structure was obtained through the presence of the relatively high abundance of α,ω-dicarboxylic acids and phenolic and benzenecarboxylic compounds. The increment in structural complexity of the phenolic and benzencarboxylic compounds in combination with the reduction in the carbon chain length of the dicarboxylic acids from the free to fulvic fraction suggests the latter to be structurally the most stable, compacted and diagenetically altered substrate. This analytical approach can now be applied to peat samples from other areas within the Everglades ecosystem, affected differently by human intervention with the aim to assess changes in organic matter preservation.
Resumo:
Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.
Resumo:
A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base-urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO-acid) for the humin-enriched clay separates. The extracts from base-urea and DMSO-acid would be regarded as 'humin' in the classical definitions. The fractions isolated from aqueous base, base-urea and DMSO-acid were characterized by solid and solution state NMR spectroscopy. The base-urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base-urea and DMSO-acid solvents isolated ca. 93% of total organic carbon from the humin-enriched fine clay fraction (<2 ?m). Characterization of the humic fractions by solid-state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base-urea extract. Lignin-derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char-derived structures were contained in the fulvic acids and fulvic acids-like material isolated from the base-urea solvent. After extraction with base-urea, the 0.5 m NaOH extract from the humin-enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution-state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO-acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long-chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids-like material isolated in the base-urea medium, indicating that urea can liberate char-derived material hydrogen bonded or trapped within the humin matrix.
Resumo:
No Estado de São Paulo, restrições do regime de chuvas no período de outono-inverno e temperaturas elevadas limitam a produção e a manutenção de cobertura no solo, tornando importante estudar alternativas para a implantação eficaz do Sistema Plantio Direto nesse Estado, especialmente para produção de fitomassa e manejo adequado para maior persistência da palha, em quantidade suficiente para melhoria da qualidade física e da matéria orgânica do solo. O experimento, conduzido em Nitossolo Vermelho distroférrico, na Fazenda Experimental Lageado-FCA-UNESP-Botucatu, teve por objetivo estudar no sistema plantio direto as prováveis alterações de alguns atributos físicos e das frações húmicas do solo com a utilização do milheto, verificando sua resposta, em três épocas de semeadura e sob cinco manejos dos resíduos, após cinco anos de estabelecida essa sucessão. O delineamento experimental foi o de blocos casualizados, com esquema de parcelas subdivididas, com quatro repetições. As parcelas foram representadas por três épocas de semeadura da cultura do milheto: época 1 (E1), época 2 (E2) e época 3 (E3). As subparcelas foram representadas por manejos da ceifa da fitomassa, sendo: manejo 1 (M1) - ceifa a cada florescimento e retirada da fitomassa; manejo 2 (M2) - ceifa a cada florescimento e permanência da fitomassa; manejo 3 (M3) - ceifa apenas no primeiro florescimento e retirada da fitomassa; manejo 4 (M4) - ceifa apenas no primeiro florescimento e permanência da fitomassa; e manejo 5 (M5) - livre crescimento. Foram coletadas amostras de solo com estrutura indeformada para realização das análises físicas, para as quais as profundidades amostradas foram: 0-0,05, 0,05-0,10 e 0,10-0,20 m. Para fracionamento químico da matéria orgânica, as profundidades foram de 0-0,05 e 0,05-0,10 m. em relação às culturas, avaliou-se a produtividade da soja, e para o milheto, a quantidade de matéria seca produzida pela parte aérea e a percentagem de fitomassa em cobertura deixada sobre o solo. A produtividade de matéria seca do milheto decresceu na ordem E1 > E2 > E3. A densidade do solo, a macroporosidade, a microporosidade e a porosidade total variaram com a época de semeadura do milheto. A adição contínua de fitomassa com ceifa a cada florescimento e permanência da cobertura proporcionou maior incremento nas frações menos estáveis da matéria orgânica (ácido húmico e ácido fúlvico). Recomenda-se, diante das condições edafoclimáticas estudadas, a semeadura do milheto na segunda e terceira épocas com ceifa apenas no primeiro florescimento, sempre se utilizando da permanência da fitomassa, para obter melhor cobertura, qualidade física do solo (menor densidade do solo, maior porosidade total) e maior produtividade para soja.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The main pool of dissolved organic carbon in tropical aquatic environments, notably in dark-coloured streams, is concentrated in humic substances (HS). Aquatic HS are large organic molecules formed by micro-biotic degradation of biopolymers and polymerization of smaller organic molecules. From an environmental point of view, the study of metal-humic interactions is often aimed at predicting the effect of aquatic HS on the bioavailability of heavy metal ions in the environment. In the present work the aquatic humic substances (HS) isolated from a dark-brown stream (located in an environmental protection area near Cubatao city in São Paulo-State, Brazil) by means of the collector XAD-8 were investigated. FTIR studies showed that the carboxylic carbons are probably the most important binding sites for Hg(II) ions within humic molecules. C-13-NMR and H-1-NMR studies of aquatic HS showed the presence of constituents with a high degree of aromaticity (40% of carbons) and small substitution. A special five-stage tangential-flow ultrafiltration device (UF) was used for size fractionation of the aquatic HS under study and for their metal species in the molecular size range 1-100 kDa (six fractions). The fractionation patterns showed that metal traces remaining in aquatic HS after their XAD-8 isolation have different distributions. Generally, the major percentage of traces of Mn, Cd and Ni (determined by ICP-AES) was preferably complexed by molecules with relatively high molecular size. Cu was bound by fractions with low molecular size and Co showed no preferential binding site in the various humic fractions. Moreover, the species formed between aquatic HS and Hg(II), prepared by spiking (determined by CVAAS), appeared to be concentrated in the relatively high molecular size fraction F-1 (> 100 kDa).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The labilities of thorium fractions including mobility and bioavailability vary significantly with soil properties. The effects of soil pH and soil organic matter on the distribution and transfer of thorium fractions defined by a sequential extraction procedure were investigated. Decrease of soil pH could enhance the phytoavailability and the potential availability of thorium in soil. Increase of organic matter reduced the phytoavailability of thorium, but enhanced the potential availability of it.
Resumo:
We present a pilot study that uses the radiocarbon (∆14C) method to determine the source of carbon buried in the surface sediment of Lough Erne, a humic, alkaline lake in northwest Ireland. ∆14C, δ13C and δ15N values were measured from phytoplankton, dissolved inorganic, dissolved organic and particulate organic carbon. A novel radiocarbon method, Stepped Combustion1 was used to estimate the degree of the burial of terrestrial carbon in surface sediment. The ∆14C values of the low temperature fractions were comparable to algal ∆14C, while the high temperature fractions were 14C-depleted (older than bulk sediment). The ∆14C end-member model indicated that ~64% of carbon in surface sediment was derived from detrital terrestrial carbon. The use of ∆14C in conjunction with stepped combustion allows the quantification of the pathways of terrestrial carbon in the system, which has implications for regional and global carbon burial.
1McGeehin, J., Burr, G.S., Jull, A.J.T., Reines, D., Gosse, J., Davis, P.T., Muhs, D., and Southon, J.R., 2001, Stepped-combustion C-14 dating of sediment: A comparison with established techniques: Radiocarbon, v. 43, p. 255-261.