899 resultados para Humanoid robots
Resumo:
Humanoid robots are an extremely complex interdisciplinary research field. Particularly, the development of high size humanoid robots usually requires joint efforts and skills from groups that are in many different research centers around the world. However, there are serious constraints in this kind of collaborative development. Some efforts have been made in order to propose new software frameworks that can allow distributed development with also some degree of hardware abstraction, allowing software reuse in successive projects. However, computation represents only one of the dimensions in robotics tasks, and the need for reuse and exchange of full robot modules between groups are growing. Large advances could be reached if physical parts of a robot could be reused in a different robot constructed with other technologies by other researcher or group. This paper proposes a new robot framework, from now on called TORP (The Open Robot Project), that aims to provide a standard architecture in all dimensions (electrical, mechanical and computational) for this collaborative development. This methodology also represents an open project that is fully shared. In this paper, the first robot constructed following the TORP specification set is presented as well as the advances proposed for its improvement. © 2010 IEEE.
Resumo:
This paper proposes a novel design of a reconfigurable humanoid robot head, based on biological likeness of human being so that the humanoid robot could agreeably interact with people in various everyday tasks. The proposed humanoid head has a modular and adaptive structural design and is equipped with three main components: frame, neck motion system and omnidirectional stereovision system modules. The omnidirectional stereovision system module being the last module, a motivating contribution with regard to other computer vision systems implemented in former humanoids, it opens new research possibilities for achieving human-like behaviour. A proposal for a real-time catadioptric stereovision system is presented, including stereo geometry for rectifying the system configuration and depth estimation. The methodology for an initial approach for visual servoing tasks is divided into two phases, first related to the robust detection of moving objects, their depth estimation and position calculation, and second the development of attention-based control strategies. Perception capabilities provided allow the extraction of 3D information from a wide range of visions from uncontrolled dynamic environments, and work results are illustrated through a number of experiments.
Resumo:
The objective of this paper is to present the evolution and the state-of-the-art in the area of legged locomotion systems. In a first phase different possibilities for implementing mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase a historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones of technological and scientific progress. After this historical timeline, some of the present-day systems are examined and their performance is analyzed. In a third phase the major areas of research and development that are presently being followed in the construction of legged robots are pointed out. Finally, some still unsolved problems that remain defying robotics research, are also addressed.
Resumo:
In this work, we present the cultural evolution that has allowed to overcome many problems derived from the limitations of the human body. These limitations have been solved by a"cyborization" process that began since early anthropogenesis. Originally, it was envisioned to deal with some diseases, accidents or body malfunctions. Nowadays, augmentations improve common human capabilities; one of the most notable is the increase of brain efficiency by using connections with a computer. A basic social question also addressed is which people will and should have access to these augmentations. Advanced humanoid robots (with human external aspect, artificial intelligence and even emotions) already exist and consequently a number of questions arise. For instance, will robots be considered living organisms? Could they be considered as persons? Will we confer the human status to robots? These questions are discussed. Our conclusions are that the advanced humanoid robots display some actions that may be considered as life-like, yet different to the life associated with living organisms, also, to some extend they could be considered as persons-like, but not humans.
Resumo:
This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, and then uses it as the initial condition of a numerical refining procedure based on the Levenberg‐Marquardt algorithm. In this way, few iterations are needed for any specified attitude, making it possible to implement the algorithm for real‐time applications. As a way to show the algorithm’s implementation, one case of study is considered throughout the paper, represented by the SILO2 humanoid robot.
Resumo:
The 'Uncanny Valley' was conceived in 1970 by Prof Masahiro Mori and details a possible relationship between an object's appearance or motion and how people perceive the object. Initially this research was used without validation. Modern technology has enabled initial investigations, summarised here, that conclude further work is required. A good design guideline for humanoid robots is desired if humanoid robots are to assist with an increasingly elderly population, but not yet possible due to technological constraints. Prosthetics is considered a good resource as the user interaction is comparable to the anticipated level of human-robot interaction and there is a wide range of existing devices.
Resumo:
The ‘action observation network’ (AON), which is thought to translate observed actions into motor codes required for their execution, is biologically tuned: it responds more to observation of human, than non-human, movement. This biological specificity has been taken to support the hypothesis that the AON underlies various social functions, such as theory of mind and action understanding, and that, when it is active during observation of non-human agents like humanoid robots, it is a sign of ascription of human mental states to these agents. This review will outline evidence for biological tuning in the AON, examining the features which generate it, and concluding that there is evidence for tuning to both the form and kinematic profile of observed movements, and little evidence for tuning to belief about stimulus identity. It will propose that a likely reason for biological tuning is that human actions, relative to non-biological movements, have been observed more frequently while executing corresponding actions. If the associative hypothesis of the AON is correct, and the network indeed supports social functioning, sensorimotor experience with non-human agents may help us to predict, and therefore interpret, their movements.
Resumo:
Imitation learning is a promising approach for generating life-like behaviors of virtual humans and humanoid robots. So far, however, imitation learning has been mostly restricted to single agent settings where observed motions are adapted to new environment conditions but not to the dynamic behavior of interaction partners. In this paper, we introduce a new imitation learning approach that is based on the simultaneous motion capture of two human interaction partners. From the observed interactions, low-dimensional motion models are extracted and a mapping between these motion models is learned. This interaction model allows the real-time generation of agent behaviors that are responsive to the body movements of an interaction partner. The interaction model can be applied both to the animation of virtual characters as well as to the behavior generation for humanoid robots.
Resumo:
Independientemente de la existencia de técnicas altamente sofisticadas y capacidades de cómputo cada vez más elevadas, los problemas asociados a los robots que interactúan con entornos no estructurados siguen siendo un desafío abierto en robótica. A pesar de los grandes avances de los sistemas robóticos autónomos, hay algunas situaciones en las que una persona en el bucle sigue siendo necesaria. Ejemplos de esto son, tareas en entornos de fusión nuclear, misiones espaciales, operaciones submarinas y cirugía robótica. Esta necesidad se debe a que las tecnologías actuales no pueden realizar de forma fiable y autónoma cualquier tipo de tarea. Esta tesis presenta métodos para la teleoperación de robots abarcando distintos niveles de abstracción que van desde el control supervisado, en el que un operador da instrucciones de alto nivel en la forma de acciones, hasta el control bilateral, donde los comandos toman la forma de señales de control de bajo nivel. En primer lugar, se presenta un enfoque para llevar a cabo la teleoperación supervisada de robots humanoides. El objetivo es controlar robots terrestres capaces de ejecutar tareas complejas en entornos de búsqueda y rescate utilizando enlaces de comunicación limitados. Esta propuesta incorpora comportamientos autónomos que el operador puede utilizar para realizar tareas de navegación y manipulación mientras se permite cubrir grandes áreas de entornos remotos diseñados para el acceso de personas. Los resultados experimentales demuestran la eficacia de los métodos propuestos. En segundo lugar, se investiga el uso de dispositivos rentables para telemanipulación guiada. Se presenta una aplicación que involucra un robot humanoide bimanual y un traje de captura de movimiento basado en sensores inerciales. En esta aplicación, se estudian las capacidades de adaptación introducidas por el factor humano y cómo estas pueden compensar la falta de sistemas robóticos de alta precisión. Este trabajo es el resultado de una colaboración entre investigadores del Biorobotics Laboratory de la Universidad de Harvard y el Centro de Automática y Robótica UPM-CSIC. En tercer lugar, se presenta un nuevo controlador háptico que combina velocidad y posición. Este controlador bilateral híbrido hace frente a los problemas relacionados con la teleoperación de un robot esclavo con un gran espacio de trabajo usando un dispositivo háptico pequeño como maestro. Se pueden cubrir amplias áreas de trabajo al cambiar automáticamente entre los modos de control de velocidad y posición. Este controlador háptico es ideal para sistemas maestro-esclavo con cinemáticas diferentes, donde los comandos se transmiten en el espacio de la tarea del entorno remoto. El método es validado para realizar telemanipulación hábil de objetos con un robot industrial. Por último, se introducen dos contribuciones en el campo de la manipulación robótica. Por un lado, se presenta un nuevo algoritmo de cinemática inversa, llamado método iterativo de desacoplamiento cinemático. Este método se ha desarrollado para resolver el problema cinemático inverso de un tipo de robot de seis grados de libertad donde una solución cerrada no está disponible. La eficacia del método se compara con métodos numéricos convencionales. Además, se ha diseñado una taxonomía robusta de agarres que permite controlar diferentes manos robóticas utilizando una correspondencia, basada en gestos, entre los espacios de trabajo de la mano humana y de la mano robótica. El gesto de la mano humana se identifica mediante la lectura de los movimientos relativos del índice, el pulgar y el dedo medio del usuario durante las primeras etapas del agarre. ABSTRACT Regardless of the availability of highly sophisticated techniques and ever increasing computing capabilities, the problems associated with robots interacting with unstructured environments remains an open challenge. Despite great advances in autonomous robotics, there are some situations where a humanin- the-loop is still required, such as, nuclear, space, subsea and robotic surgery operations. This is because the current technologies cannot reliably perform all kinds of task autonomously. This thesis presents methods for robot teleoperation strategies at different levels of abstraction ranging from supervisory control, where the operator gives high-level task actions, to bilateral teleoperation, where the commands take the form of low-level control inputs. These strategies contribute to improve the current human-robot interfaces specially in the case of slave robots deployed at large workspaces. First, an approach to perform supervisory teleoperation of humanoid robots is presented. The goal is to control ground robots capable of executing complex tasks in disaster relief environments under constrained communication links. This proposal incorporates autonomous behaviors that the operator can use to perform navigation and manipulation tasks which allow covering large human engineered areas of the remote environment. The experimental results demonstrate the efficiency of the proposed methods. Second, the use of cost-effective devices for guided telemanipulation is investigated. A case study involving a bimanual humanoid robot and an Inertial Measurement Unit (IMU) Motion Capture (MoCap) suit is introduced. Herein, it is corroborated how the adaptation capabilities offered by the human-in-the-loop factor can compensate for the lack of high-precision robotic systems. This work is the result of collaboration between researchers from the Harvard Biorobotics Laboratory and the Centre for Automation and Robotics UPM-CSIC. Thirdly, a new haptic rate-position controller is presented. This hybrid bilateral controller copes with the problems related to the teleoperation of a slave robot with large workspace using a small haptic device as master. Large workspaces can be covered by automatically switching between rate and position control modes. This haptic controller is ideal to couple kinematic dissimilar master-slave systems where the commands are transmitted in the task space of the remote environment. The method is validated to perform dexterous telemanipulation of objects with a robotic manipulator. Finally, two contributions for robotic manipulation are introduced. First, a new algorithm, the Iterative Kinematic Decoupling method, is presented. It is a numeric method developed to solve the Inverse Kinematics (IK) problem of a type of six-DoF robotic arms where a close-form solution is not available. The effectiveness of this IK method is compared against conventional numerical methods. Second, a robust grasp mapping has been conceived. It allows to control a wide range of different robotic hands using a gesture based correspondence between the human hand space and the robotic hand space. The human hand gesture is identified by reading the relative movements of the index, thumb and middle fingers of the user during the early stages of grasping.
Resumo:
[EN]In this paper we will present Eldi, a mobile robot that has been in daily operation at the Elder Museum of Science and Technology at Las Palmas de Gran Canaria since December 1999. This is an ongoing project that was organized in three di erent stages, describing here the one that has been accomplished. The initial phase, termed \The Player", the second stage, actually under development, has been called "The Cicerone" and in a nal phase, termed \The Vagabond", Eldi will be allowed to move erratically across the Museum. This paper will focus on the accomplished rst stage to succinctly describe the physical robot and the environment and demos developed. Finally we will summarize some important lessons learnt.
Resumo:
One of the most important characteristics of intelligent activity is the ability to change behaviour according to many forms of feedback. Through learning an agent can interact with its environment to improve its performance over time. However, most of the techniques known that involves learning are time expensive, i.e., once the agent is supposed to learn over time by experimentation, the task has to be executed many times. Hence, high fidelity simulators can save a lot of time. In this context, this paper describes the framework designed to allow a team of real RoboNova-I humanoids robots to be simulated under USARSim environment. Details about the complete process of modeling and programming the robot are given, as well as the learning methodology proposed to improve robot's performance. Due to the use of a high fidelity model, the learning algorithms can be widely explored in simulation before adapted to real robots. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
The kinematics of the anatomical shoulder are analysed and modelled as a parallel mechanism similar to a Stewart platform. A new method is proposed to describe the shoulder kinematics with minimal coordinates and solve the indeterminacy. The minimal coordinates are defined from bony landmarks and the scapulothoracic kinematic constraints. Independent from one another, they uniquely characterise the shoulder motion. A humanoid mechanism is then proposed with identical kinematic properties. It is then shown how minimal coordinates can be obtained for this mechanism and how the coordinates simplify both the motion-planning task and trajectory-tracking control. Lastly, the coordinates are also shown to have an application in the field of biomechanics where they can be used to model the scapulohumeral rhythm.
Resumo:
The development of robots has shown itself as a very complex interdisciplinary research field. The predominant procedure for these developments in the last decades is based on the assumption that each robot is a fully personalized project, with the direct embedding of hardware and software technologies in robot parts with no level of abstraction. Although this methodology has brought countless benefits to the robotics research, on the other hand, it has imposed major drawbacks: (i) the difficulty to reuse hardware and software parts in new robots or new versions; (ii) the difficulty to compare performance of different robots parts; and (iii) the difficulty to adapt development needs-in hardware and software levels-to local groups expertise. Large advances might be reached, for example, if physical parts of a robot could be reused in a different robot constructed with other technologies by other researcher or group. This paper proposes a framework for robots, TORP (The Open Robot Project), that aims to put forward a standardization in all dimensions (electrical, mechanical and computational) of a robot shared development model. This architecture is based on the dissociation between the robot and its parts, and between the robot parts and their technologies. In this paper, the first specification for a TORP family and the first humanoid robot constructed following the TORP specification set are presented, as well as the advances proposed for their improvement.
Resumo:
The Bucknell Humanoid Robot Arm project was developed in order toprovide a lightweight robotic arm for the IHMC / Bucknell University bipedal robot that will provide a means of manipulation and facilitate operations in urban environments. The resulting fabricated arm described in this thesis weighs only 13 pounds, and is capable of holding 11 pounds fully outstretched, lifting objects such as tools, and it can open doors. It is also capable of being easily integrated with the IHMC / Bucknell University biped. This thesis provides an introduction to robots themselves, discusses the goals of the Bucknell Humanoid Robot Arm project, provides a background on some of the existing robots, and shows how the Bucknell Humanoid Robot Arm fits in with the studies that have been completed. After reading these studies, important items such as design trees and operational scenarios were completed. The completion of these items led to measurable specifications and later the design requirements and specifications. A significant contribution of this thesis to the robotics discipline involves the design of the actuator itself. The arm uses of individual, lightweight, compactly designed actuators to achieve desired capabilities and performance requirements. Many iterations were completed to get to the final design of each actuator. After completing the actuators, the design of the intermediate links and brackets was finalized. Completion of the design led to the development of a complex controls system which used a combination of Clanguage and Java.
Resumo:
The GuRm is a 1.2m tall, 23 degree of freedom humanoid consuucted at the University of Queensland for research into humanoid robotics. The key challenge being addressed by the GuRw projcct is the development of appropriate learning strategies for control and coodinadon of the robot’s many joints. The development of learning strategies is Seen as a way to sidestep the inherent intricacy of modeling a multi-DOP biped robot. This paper outlines the approach taken to generate an appmpria*e control scheme for the joinis of the GuRoo. The paper demonsrrates the determination of local feedback control parameters using a genetic algorithm. The feedback loop is then augmented by a predictive modulator that learns a form of feed-fonward control to overcome the irregular loads experienced at each joint during the gait cycle. The predictive modulator is based on thc CMAC architecture. Results from tats on the GuRoo platform show that both systems provide improvements in stability and tracking of joint control.