996 resultados para Human tooth
Resumo:
In vitro studies have provided conflicting evidence of temperature changes in the tooth pulp chamber after low-level laser irradiation of the tooth surface. The present study was an in vitro evaluation of temperature increases in the human tooth pulp chamber after diode laser irradiation (GaAlAs, lambda = 808 nm) using different power densities. Twelve human teeth (three incisors, three canines, three premolars and three molars) were sectioned in the cervical third of the root and enlarged for the introduction of a thermocouple into the pulp chamber. The teeth were irradiated with 417 mW, 207 mW and 78 mW power outputs for 30 s on the vestibular surface approximately 2 mm from the cervical line of the crown. The highest average increase in temperature (5.6A degrees C) was observed in incisors irradiated with 417 mW. None of the teeth (incisors, canines, premolars or molars) irradiated with 207 mW showed temperature increases higher than 5.5A degrees C that could potentially be harmful to pulp tissue. Teeth irradiated with 78 mW showed lower temperature increases. The study showed that diode laser irradiation with a wavelength of 808 nm at 417 mW power output increased the pulp chamber temperature of certain groups of teeth, especially incisors and premolars, to critical threshold values for the dental pulp (5.5A degrees C). Thus, this study serves as a warning to clinicians that ""more"" is not necessarily ""better"".
Resumo:
Purpose : To compare the radiopacity of 13 restorative materials, (a conventional glass-ionomer cement, three resin-modified glass-ionomer cements, six polyacid-modified resin-based composites, and three resin-based composites) to sound tooth structure. Materials and Methods: 315 specimens were made of the restorative materials (n= 21), of 2 min height and 4.1 mm diameter. Radiographs were taken of the specimens, together with the tooth structure sample and an aluminum step wedge. The radiopacity values of each specimen were taken using a transmission densitometer. Results: ANOVA and Tukey's test (95% level of confidence) revealed that, except for a resin-based composite, a polyacid-modified resin-based composite, a resin-modified glass-ionomer cement and the conventional glass-ionomer cement, all the evaluated restorative materials were more radiopaque than the tooth structure.
Resumo:
The purpose of this study was to evaluate in vitro three adhesive systems: a total etching single-component system (G1 Prime & Bond 2.1), a self-etching primer (G2 Clearfil SE Bond), and a self-etching adhesive (G3 One Up Bond F), through shear bond strength to enamel of human teeth, evaluating the type of fracture through stereomicroscopy, following the ISO guidance on adhesive testing. Thirty sound premolars were bisected mesiodistally and the buccal and lingual surfaces were embedded in acrylic resin, polished up to 600-grit sandpapers, and randomly assigned to three experimental groups (n = 20). Composite resin cylinders were added to the tested surfaces. The specimens were kept in distilled water (37°C/24 h), thermocycled for 500 cycles (5°C-55°C) and submitted to shear testing at a crosshead speed of 0.5 mm/min. The type of fracture was analyzed under stereomicroscopy and the data were submitted to Anova, Tukey and Chi-squared (5%) statistical analyses. The mean adhesive strengths were G1: 18.13 ± 6.49 MPa, (55% of resin cohesive fractures); G2: 17.12 ± 5.80 MPa (90% of adhesive fractures); and G3: 10.47 ± 3.14 MPa (85% of adhesive fractures). In terms of bond strength, there were no significant differences between G1 and G2, and G3 was significantly different from the other groups. G1 presented a different type of fracture from that of G2 and G3. In conclusion, although the total etching and self-etching systems presented similar shear bond strength values, the types of fracture presented by them were different, which can have clinical implications.
Resumo:
AIM To assess the pro-angiogenic and pro-inflammatory capacity of the dentine-pulp complex in response to the prolyl hydroxylase inhibitor L-mimosine in a tooth slice organ culture model. METHODOLOGY Human teeth were sectioned transversely into 600-μm-thick slices and cultured in medium supplemented with serum and antibiotics. Then, pulps were stimulated for 48 h with L-mimosine. Pulps were subjected to viability measurements based on formazan formation in MTT assays. In addition, histological evaluation of pulps was performed based on haematoxylin and eosin staining. Culture supernatants were subjected to immunoassays for vascular endothelial growth factor (VEGF) to determine the pro-angiogenic capacity and to immunoassays for interleukin (IL)-6 and IL-8 to assess the pro-inflammatory response. Interleukin-1 served as pro-inflammatory control. Echinomycin was used to inhibit hypoxia-inducible factor-1 (HIF-1) alpha activity. Data were analysed using Student's t-test and Mann-Whitney U test. RESULTS Pulps within tooth slices remained vital upon L-mimosine stimulation as indicated by formazan formation and histological evaluation. L-mimosine increased VEGF production when normalized to formazan formation in the pulp tissue of the tooth slices (P < 0.05). This effect on VEGF was reduced by echinomycin (P < 0.01). Changes in normalized IL-6 and IL-8 levels upon treatment with L-mimosine did not reach the level of significance (P > 0.05), whilst treatment with IL-1, which served as positive control, increased IL-6 (P < 0.05) and IL-8 levels (P < 0.05). CONCLUSIONS The prolyl hydroxylase inhibitor L-mimosine increased VEGF production via HIF-1 alpha in the tooth slice organ culture model whilst inducing no prominent increase in IL-6 and IL-8. Pre-clinical studies will reveal if these in vitro effects translate into dental pulp regeneration.
Resumo:
The development of dentition is a fascinating process that involves a complex series of epithelial-mesenchymel signaling interactions. That such a precise process frequently goes awry is not surprising. Indeed, tooth agenesis is one of the most commonly inherited disorders in humans that affects up to twenty percent of the population and imposes significant functional, emotional and financial burdens on patients. Mutations in the paired box domain containing transcription factor PAX9 result in autosomal dominant tooth agenesis that primarily involves posterior dentition. Despite these advances, little is known about how PAX9 mediates key signaling actions in tooth development and how aberrations in PAX9 functions lead to tooth agenesis. As an initial step towards providing evidence for the pathogenic role of mutant PAX9 proteins, I performed a series of molecular genetic analyses aimed at resolving the structural and functional defects produced by a number of PAX9 mutations causing non-syndromic posterior tooth agenesis. It is likely that the pathogenic mechanism underlying tooth agenesis for the first two mutations studied (219InsG and IIe87Phe) is haploinsufficiency. For the six paired domain missense mutations studied, the lack of functional defects observed for three of the mutant proteins suggests that these mutations altered PAX9 function through alternate mechanisms. Next, I explored further the nature of the partnership between Pax9 and the Msx1 homeoprotein and their role in the expression of a downstream effector molecule, Bmp4. When viewed in the context of events occurring in dental mesenchyme, the results of these studies indicate that the Pax9-Msx1 protein interaction involves the localized up-regulation of Bmp4 activity that is mediated by synergistic interactions between the two transcription factors. Importantly, these assays corroborate in vivo data from mouse genetic studies and support reports of Pax9-dependent expression of Bmp4 in dental mesenchyme. Taken together, these results suggest that PAX9 mutations cause an early developmental defect due to an inability to maintain the inductive potential of dental mesenchyme through involvement in a pathway involving Msx1 and Bmp4. ^
Resumo:
Tooth enamel is the stiffest tissue in the human body with a well-organized microstructure. Developmental diseases, such as enamel hypomineralisation, have been reported to cause marked reduction in the elastic modulus of enamel and consequently impair dental function. We produce evidence, using site-specific transmission electron microscopy (TEM), of difference in microstructure between sound and hypomineralised enamel. Built upon that, we develop a mechanical model to explore the relationship of the elastic modulus of the mineral-protein composite structure of enamel with the thickness of protein layers and the direction of mechanical loading. We conclude that when subject to complex mechanical loading conditions, sound enamel exhibits consistently high stiffness, which is essential for dental function. A marked decrease in stiffness of hypomineralised enamel is caused primarily by an increase in the thickness of protein layers between apatite crystals and to a lesser extent by an increase in the effective crystal orientation angle. © 2009 Elsevier Ltd. All rights reserved.
Immunoexpression of integrins in ameloblastoma, adenomatoid odontogenic tumor, and human tooth germs
Resumo:
The expression of integrins alpha2beta1, alpha3beta1, and alpha5beta1 in 30 ameloblastomas (20 solid and 10 unicystic tumors), 12 adenomatoid odontogenic tumors (AOTs), and 5 human tooth germs in different stages of odontogenesis was analyzed. The distribution, location, pattern, and intensity of immunohistochemical expression were evaluated. Intensity was analyzed using scores (0 = absence, 1 = weak staining, and 2 = strong staining). No difference in the immunoexpression of the integrins was observed between solid and unicystic ameloblastomas. When these two ameloblastoma types were pooled into a single group, the following significant differences were found: immunoexpression of integrin alpha2beta1 was stronger in ameloblastomas than in AOTs and tooth germs, and the expression of integrin alpha5beta1 was stronger in ameloblastomas than in AOTs. The lack of detection of integrin alpha3beta1 in tooth germs and its detection in the odontogenic tumors studied suggest that this integrin might be used as a marker of neoplastic transformation in odontogenic tissues.
Immunoexpression of integrins in ameloblastoma, adenomatoid odontogenic tumor, and human tooth germs
Resumo:
The expression of integrins alpha2beta1, alpha3beta1, and alpha5beta1 in 30 ameloblastomas (20 solid and 10 unicystic tumors), 12 adenomatoid odontogenic tumors (AOTs), and 5 human tooth germs in different stages of odontogenesis was analyzed. The distribution, location, pattern, and intensity of immunohistochemical expression were evaluated. Intensity was analyzed using scores (0 = absence, 1 = weak staining, and 2 = strong staining). No difference in the immunoexpression of the integrins was observed between solid and unicystic ameloblastomas. When these two ameloblastoma types were pooled into a single group, the following significant differences were found: immunoexpression of integrin alpha2beta1 was stronger in ameloblastomas than in AOTs and tooth germs, and the expression of integrin alpha5beta1 was stronger in ameloblastomas than in AOTs. The lack of detection of integrin alpha3beta1 in tooth germs and its detection in the odontogenic tumors studied suggest that this integrin might be used as a marker of neoplastic transformation in odontogenic tissues.
Resumo:
Objectives: To evaluate the pulpo-dentin complex response to a dentin adhesive application in deep cavities performed in human teeth.Methods: Deep class V cavities were prepared on the buccal surface of 46 premolars. The remaining dentin of the axial wall received 10% phosphoric acid and dentin adhesive (group DA), or was protected before the acid and dentin adhesive application with calcium hydroxide cement (group CH). Half of the teeth, which received the acid application directly over the axial wall, were contaminated prior to the procedures with dental plaque collected from the patient's own teeth (group DAC). The plaque was placed on the dentin for 5 min and then the cavity was washed. All teeth were restored with a light-cured composite resin. The teeth were extracted after 7, 30 or 60 days and prepared according to normal histologic techniques. Serial sections were stained with WE, Masson's trichrome and Brown & Brenn technique for demonstration of bacteria.Results: the histopathologic evaluation showed that in groups DA and DAC, the inflammatory response was more evident than in group CH. Also, the intensity of the pulp reaction increased as the remaining dentin thickness decreased. There was no statistical difference in the inflammatory response between the groups DA and DAC.Conclusion: Based on the experimental conditions, we concluded that the All Bond 2 adhesive system, when applied on dentin in deep cavities, showed an acceptable biocompatibility. However, the intensity of the pulpo-dentin complex response depends on the remaining dentin thickness. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the number and the diameter of dentin tubules in root canals, in the cervical, middle, and apical thirds, of human and bovine teeth. Twenty-four single-rooted, human premolars were divided into four groups (n = 6): GH1, 10 to 15 years; GH2, 16 to 30 years; GH3, 31 to 45 years; and GH4, 46 to 80 years; and 24 bovine incisors were divided into four groups (n = 6): GB1, central; GB2, lateral first; GB3, lateral second; and GB4, lateral third. The crowns were removed from the specimens, which were then debrided, sectioned longitudinally in the vestibular-lingual direction, and submitted to ultrasonic cleaning. Scanning electron microscopic evaluations were made with 1,000x and 5,000x magnification. According to the root thirds, statistically significant differences were found both for the number and the diameter of dentin tubules, with the cervical third presenting the highest mean values for both specimen types. As regards the number of dentin tubules, it was observed that the bovine specimens presented a significantly higher mean value than the human specimens; this difference was not observed when the diameters of the two types were compared.
Resumo:
Background: Since only a few data have been published concerning the effects of resinous dental materials on the pulp-dentin complex, the aim of this study was to evaluate the biocompatibility of resin-based materials applied as liners in deep cavities prepared in duman teeth. Methods: After preparing class V cavities, the following dental materials were applied on the axial walls: group 1, Vitrebond™ (VIT; 3M ESPE); group 2, Ultra-Blend® Plus™ (UBP; Untradent); and group 3, Clearfil™ SE Bond (CSEB; Kuraray). In group 4 (control), the hard-setting calcium hydroxide cement Dycal (CH; Caulk/Dentsply) was used. The teeth extracted at 7 days or between 30 and 85 days after the clinical procedures were processed for histological evaluation. Results: For all the experimental and control groups, most of specimens exhibited no pulpal response or slight inflammatory reaction associated with slight tissue disorganization at 7-day period. Moderate inflammatory pulpal response occurred only in one tooth (RDT = 262 μm) of group 3 in which transdentinal diffusion of resin components was observed. Conclusion: The resin-based dental cements VIT and UBP as well as the bonding agent CSEB presented acceptable biocompatibility when applied in deep cavities prepared in sound human teeth. © 2006 Wiley Periodicals, Inc.
Resumo:
Aim : To compare the push-out strength of bovine- and human-root dentin and, thus, evaluate the suitability of bovine-root dentin to substitute human-root dentin for bond strength testing. Materials and Methods : Ten single-rooted human-teeth and ten bovine incisors were prepared using a #3 bur of a fiber post system (12 mm long). The posts were duplicated with resin cement (Duolink). The root canals were treated with All Bond 2 adhesive system and the resin posts were cemented using Duolink. The specimens were cut perpendicular to their long axis, yielding disc-specimens with 1.5 mm thickness, which were submitted to a push-out test (1 mm/min). Ten bond strength values per group (n = 10) were used for statistical analysis (Student t test, a =.05). Results : Statistically significant differences were found for the bond strength values between bovine- (4.1 1.3 MPa) and human-root dentin (8.6 5.7 MPa) (P =.0001). Conclusion : The push-out strengths of bovine- and human-root dentin were statistically different.
Resumo:
Amalgam has been used as a filling material for over 150 years. Mercury, copper, and zinc are present in restoration. The aim of this study was to compare mercury, copper, and zinc concentrations in extracted human teeth with amalgam restorations and teeth without restorations. Thirty-two teeth, 15 restored with dental amalgam and 17 without restorations, were chemically analyzed in an Optima 3300 DV (Perkin Elmer) plasma emission spectrometer. Mercury, copper, and zinc were found in human teeth regardless of the presence of amalgam restorations. The highest mercury concentrations were found in the coronary portions of the teeth with amalgam restorations. Copper concentrations were very high. Zinc concentrations in the teeth without restoration were lower than those seen in the coronary portion of the teeth with restorations. © 2009 Heldref Publications.
Resumo:
With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basic physical-chemistry reactions of demineralization and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using Synchrotron X-ray diffraction. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the Brazilian Synchrotron Light Laboratory-LNLS, Campinas, Brazil. X-ray diffraction experiments were performed both in powder samples and polished surfaces. The powder samples were analyzed to obtain the characterization of a typical healthy enamel pattern. The polished surfaces were analyzed in specific areas that have been identified as fluorotic ones. X-ray diffraction data were obtained for all samples and these data were compared with the control samples and also with the literature data. (c) 2012 Elsevier Ltd. All rights reserved.