961 resultados para Human proximal tubule epithelial cells
Resumo:
The progression of renal disease correlates strongly with hypertension and the degree of proteinuria, suggesting a link between excessive Na+ reabsorption and exposure of the proximal tubule to protein. The present study investigated the effects of albumin on cell growth and Na+ uptake in primary cultures of human proximal tubule cells (PTC). Albumin (1.0 mg/ml) increased cell proliferation to 134.1 +/- 11.8% (P < 0.001) of control levels with no change in levels of apoptosis. Exposure to 0.1 and 1.0 mg/ml albumin increased total Na-22(+) uptake to 119.1 &PLUSMN; 6.3% (P = 0.005) and 115.6 &PLUSMN; 5.3% (P < 0.006) of control levels, respectively, because of an increase in Na+/H+ exchanger isoform 3 (NHE3) activity. This was associated with an increase in NHE3 mRNA to 161.1 +/- 15.1% (P < 0.005) of control levels in response to 0.1 mg/ml albumin. Using confocal microscopy with a novel antibody raised against the predicted extracellular NH2 terminus of human NHE3, we observed in nonpermeabilized cells that exposure of PTC to albumin (0.1 and 1.0 mg/ml) increased NHE3 at the cell surface to 115.4 &PLUSMN; 2.7% (P < 0.0005) and 122.4 +/- 3.7% (P < 0.0001) of control levels, respectively. This effect was paralleled by significant increases in NHE3 in the subplasmalemmal region as measured in permeabilized cells. These albumin-induced increases in expression and activity of NHE3 in PTC suggest a possible mechanism for Na+ retention in response to proteinuria.
Resumo:
In both humans and birds, urate is an important antioxidant when maintained at normal plasma concentrations. Though human kidneys primarily reabsorb filtered urate, while those of birds perform mostly secretion, both maintain urate levels at ~300microM. The importance of maintaining urate levels within the homeostatic range was observed when the study of several prominent diseases revealed an association with hyperuricemia. This study examined the effect of elevated zinc concentration on avian urate secretion. Here, acute exposure of chicken proximal tubule epithelial cells (cPTCs) to zinc stress had no effect on urate secretion, but prolonged zinc-induced cellular stress inhibited active transepithelial urate secretion with no change in Mrp4 expression, glucose transport, or transepithelial resistance. Moreover, zinc had no effect on urate transport by isolated brush border membrane vesicles, suggesting involvement of a more complex cellular stress adaptation. Previous work has demonstrated that AMP-activated protein kinase (AMPK), a critical metabolic regulator, conserves energy during cellular stress by shutting down ATP-utilizing processes and activating ATP-generating processes. Pharmacological activation of AMPK by AICAR produced decreased urate secretion by cPTCs similar to the effect seen with prolonged exposure to zinc, while the AMPK inhibitor Compound C prevented both AICAR and zinc inhibition of urate secretion, suggesting a stress induced mechanism of regulation. Supported by NSF. IACUC #A08-046.
Resumo:
Given the emerging epidemic of renal disease in HIV+ patients and the fact that HIV DNA and RNA persist in the kidneys of HIV+ patients despite therapy, it is necessary to understand the role of direct HIV-1 infection of the kidney. HIV-associated kidney disease pathogenesis is attributed in large part to viral proteins. Expression of Vpr in renal tubule epithelial cells (RTECs) induces G2 arrest, apoptosis and polyploidy. The ability of a subset of cells to overcome the G2/M block and progress to polyploidy is not well understood. Polyploidy frequently associates with a bypass of cell death and disease pathogenesis. Given the ability of the kidney to serve as a unique compartment for HIV-1 infection, and the observed occurrence of polyploid cells in HIV+ renal cells, it is critical to understand the mechanisms and consequences of Vpr-induced polyploidy.
Here I determined effects of HIV-1 Vpr expression in renal cells using highly efficient transduction with VSV.G pseudotyped lentiviral vectors expressing Vpr in the HK2 human tubule epithelial cell line. Using FACS, fluorescence microscopy, and live cell imaging I show that G2 escape immediately precedes a critical junction between two distinct outcomes in Vpr+ RTECs: mitotic cell death and polyploidy. Vpr+ cells that evade aberrant mitosis and become polyploid have a substantially higher survival rate than those that undergo complete mitosis, and this survival correlates with enrichment for polyploidy in cell culture over time. Further, I identify a novel role for ATM kinase in promoting G2 arrest escape and polyploidy in this context. In summary, my work identifies ATM-dependent override of Vpr-mediated G2/M arrest as a critical determinant of cell fate Vpr+ RTECs. Further, our work highlights how a poorly understood HIV mechanism, ploidy increase, may offer insight into key processes of reservoir establishment and disease pathogenesis in HIV+ kidneys.
Resumo:
Carriers of mutations in the cell cycle checkpoint protein kinase ataxia telangiectasia mutated (ATM), which represent 1-2% of the general population, have an increased risk of breast cancer. However, experimental evidence that ATM deficiency contributes to human breast carcinogenesis is lacking. We report here that in MCF-10A and MCF-12A cells, which are well established normal human mammary gland epithelial cell models, partial or almost complete stable ATM silencing or pharmacological inhibition resulted in cellular transformation, genomic instability, and formation of dysplastic lesions in NOD/SCID mice. These effects did not require the activity of exogenous DNA-damaging agents and were preceded by an unsuspected and striking increase in cell proliferation also observed in primary human mammary gland epithelial cells. Increased proliferation correlated with a dramatic, transient, and proteasome-dependent reduction of p21(WAF1/CIP1) and p27(KIP1) protein levels, whereas little or no effect was observed on p21(WAF1/CIP1) or p27(KIP1) mRNAs. p21(WAF1/CIP1) silencing also increased MCF-10A cell proliferation, thus identifying p21(WAF1/CIP1) down-regulation as a mediator of the proliferative effect of ATM inhibition. Our findings provide the first experimental evidence that ATM is a human breast tumor suppressor. In addition, they mirror the sensitivity of ATM tumor suppressor function and unveil a new mechanism by which ATM might prevent human breast tumorigenesis, namely a direct inhibitory effect on the basal proliferation of normal mammary epithelial cells.
Resumo:
Diabetic nephropathy affects 30-40% of diabetics leading to end-stage kidney failure through progressive scarring and fibrosis. Previous evidence suggests that tissue transglutaminase (tTg) and its protein cross-link product epsilon(gamma-glutamyl)lysine contribute to the expanding renal tubulointerstitial and glomerular basement membranes in this disease. Using an in vitro cell culture model of renal proximal tubular epithelial cells we determined the link between elevated glucose levels with changes in expression and activity of tTg and then, by using a highly specific site directed inhibitor of tTg (1,3-dimethyl-2[(oxopropyl)thio]imidazolium), determined the contribution of tTg to glucose-induced matrix accumulation. Exposure of cells to 36 mm glucose over 96 h caused an mRNA-dependent increase in tTg activity with a 25% increase in extracellular matrix (ECM)-associated tTg and a 150% increase in ECM epsilon(gamma-glutamyl)lysine cross-linking. This was paralleled by an elevation in total deposited ECM resulting from higher levels of deposited collagen and fibronectin. These were associated with raised mRNA for collagens III, IV, and fibronectin. The specific site-directed inhibitor of tTg normalized both tTg activity and ECM-associated epsilon(gamma-glutamyl)lysine. Levels of ECM per cell returned to near control levels with non-transcriptional reductions in deposited collagen and fibronectin. No changes in transforming growth factor beta1 (expression or biological activity) occurred that could account for our observations, whereas incubation of tTg with collagen III indicated that cross-linking could directly increase the rate of collagen fibril/gel formation. We conclude that Tg inhibition reduces glucose-induced deposition of ECM proteins independently of changes in ECM and transforming growth factor beta1 synthesis thus opening up its possible application in the treatment other fibrotic and scarring diseases where tTg has been implicated.
Resumo:
The choice of model used to study human respiratory syncytial virus (RSV) infection is extremely important. RSV is a human pathogen that is exquisitely adapted to infection of human hosts. Rodent models, such as mice and cotton rats, are semi-permissive to RSV infection and do not faithfully reproduce hallmarks of RSV disease in humans. Furthermore, immortalized airway-derived cell lines, such as HEp-2, BEAS-2B, and A549 cells, are poorly representative of the complexity of the respiratory epithelium. The development of a well-differentiated primary pediatric airway epithelial cell models (WD-PAECs) allows us to simulate several hallmarks of RSV infection of infant airways. They therefore represent important additions to RSV pathogenesis modeling in human-relevant tissues. The following protocols describe how to culture and differentiate both bronchial and nasal primary pediatric airway epithelial cells and how to use these cultures to study RSV cytopathogenesis.