965 resultados para Human cytomegalovirus DNA
Resumo:
Members of the Herpesviridae family have been implicated in a number of tumours in humans. At least 75% of the human population has had contact with cytomegalovirus (HCMV). In this work, we screened 75 Brazilian glioma biopsies for the presence of HCMV DNA sequences. HCMV DNA was detected in 36% (27/75) of the biopsies. It is possible that HCMV could be a co-factor in the evolution of brain tumours.
Resumo:
The quantification of human cytomegalovirus (HCMV DNA) by real-time PCR is currently a primary option for laboratory diagnosis of HCMV infection. However, the optimal sample material remains controversial due to the use of different PCR assays. To explore the best blood component for HCMV DNA surveillance after liver transplantation, whole blood (WB), serum (SE), and plasma (PL) specimens were collected simultaneously from targeted patients and examined for HCMV DNA using one commercially available assay. The HCMV DNA-positive rate with WB (16.67%) was higher than that with either SE or PL (8.33%, both P<0.01). Quantitative DNA levels in WB were of greater magnitude than those in SE (WB-SE mean log-transformed difference, 0.99; 95%CI=0.74-1.25; P<0.0001) and PL (WB-PL mean log-transformed difference, 1.37; 95%CI=1.07-1.66; P<0.0001). Dynamic monitoring revealed that HCMV DNA in WB was positive sooner and had higher values for a longer period of time during therapy. With earlier positive detection, higher sensitivity, and yield of greater viral loads, WB compared favorably to SE or PL and hence is recommended as the superior material for HCMV DNA surveillance after liver transplantation. In addition, infant recipients require more intensive monitoring and prophylactic care because of their higher susceptibility to primary HCMV infection.
Resumo:
Herpesvirus reactivation is common after liver transplantation. Analyze the presence of cytomegalovirus (HCMV) and human herpesvirus-6 (HHV-6) DNA in liver donor biopsies, seeking to better understand issues involving human donor leukocyte antigens (HLA)-A, B and DR, as well as correlations with acute cellular rejection. Fifty-nine liver transplantation patients were investigated for the presence of HCMV and HHV-6 DNA in liver donor biopsies, using the Nested-PCR technique. The clinical donor information and HLA matches were obtained from the São Paulo State Transplant System. The recipients' records regarding acute cellular rejection were studied. Seven (11.8%) biopsies were positive for HCMV DNA and 29 (49%) were positive for HHV-6 DNA. In 14 donors with HLA-DR 15 nine had HHV-6 DNA positive liver biopsy with a tendency for significant association (p=0.09), 22 recipients developed acute cellular rejection and 9/22 were positive for HLA-DR 15 (p=0.03; χ(2)=4.51), which was statistically significant in univariate analysis and showed a tendency after multivariate analysis (p=0.08). HHV-6 DNA was prevalent in liver donors studied as well as HLA-DR 15. These findings suggest that patients with HLA-DR 15 in liver donor biopsies develop more rejection after liver transplantation.
Resumo:
INTRODUCTION: Human cytomegalovirus is an opportunistic betaherpesvirus that causes persistent and serious infections in immunodeficient patients. Recurrent infections occur due to the presence of the virus in a latent state in some cell types. It is possible to examine the virus using molecular methods to aid in the immunological diagnosis and to generate a molecular viral profile in immunodeficient patients. The objective of this study was to characterize cytomegalovirus genotypes and to generate the epidemiological and molecular viral profile in immunodeficient patients. METHODS: A total of 105 samples were collected from immunodeficient patients from the City of Belém, including newborns, hemodialysis patients, transplant recipients and HIV+ patients. An IgG and IgM antibody study was completed using ELISA, and enzymatic analysis by restriction fragment length polymorphism (RFLP) was performed to characterize viral genotypes. RESULTS: It was observed that 100% of the patients had IgG antibodies, 87% of which were IgG+/IgM-, consistent with a prior infection profile, 13% were IgG+/IgM+, suggestive of recent infection. The newborn group had the highest frequency (27%) of the IgG+/IgM+ profile. By RFLP analysis, only one genotype was observed, gB2, which corresponded to the standard AD169 strain. CONCLUSIONS: The presence of IgM antibodies in new borns indicates that HCMV continues to be an important cause of congenital infection. The low observed genotypic diversity could be attributed to the small sample size because newborns were excluded from the RFLP analysis. This study will be continued including samples from newborns to extend the knowledge of the general and molecular epidemiology of HCMV in immunodeficient patients.
Resumo:
BACKGROUND: We studied human cytomegalovirus (CMV) donor-to-recipient transmission patterns in organ transplantation by analyzing genomic variants on the basis of CMV glycoprotein B (gB) genotyping. METHODS: Organ transplant recipients were included in the study if they had CMV viremia, if they had received an organ from a CMV-seropositive donor, and if there was at least 1 other recipient of an organ from the same donor who developed CMV viremia. Genotypes (gB1-4) were determined by real-time polymerase chain reaction. RESULTS: Forty-seven recipients of organs from 21 donors developed CMV viremia. Twenty-three recipients had a pretransplant donor/recipient (D/R) CMV serostatus of D(+)/R(+), and 24 had a serostatus of D(+)/R(-). The prevalences of genotypes in recipients were as follows: for gB1, 51% (n = 24); for gB2, 19% (n = 9); for gB3, 9% (n = 4); for gB4, 0% (n = 0); and for mixed infection, 21% (n = 10). Recipients of an organ from a common donor had infection with CMV of the same gB genotype in 12 (57%) of 21 instances. Concordance between genotypes was higher among seronegative (i.e., D(+)/R(-)) recipients than among seropositive (D(+)/R(+)) recipients, although discordances resulting from the transmission of multiple strains were seen. In seropositive recipients, transmission of multiple strains from the donor could not be differentiated from reactivation of a recipient's own strains. CONCLUSION: Our analysis of strain concordance among recipients of organs from common donors showed that transmission of CMV has complex dynamic patterns. In seropositive recipients, transmission or reactivation of multiple CMV strains is possible.
Resumo:
To assess the clinical relevance of a semi-quantitative measurement of human cytomegalovirus (HCMV) DNA in renal transplant recipients within the typical clinical context of a developing country where virtually 100% of both receptors and donors are seropositive for this virus, we have undertaken HCMV DNA quantification using a simple, semi-quantitative, limiting dilution polymerase chain reaction (PCR). We evaluated this assay prospectively in 52 renal transplant patients from whom a total of 495 serial blood samples were collected. The samples scored HCMV positive by qualitative PCR had the levels of HCMV DNA determined by end-point dilution-PCR. All patients were HCMV DNA positive during the monitoring period and a diagnosis of symptomatic infection was made for 4 of 52 patients. In symptomatic patients the geometric mean of the highest level of HCMV DNAemia was 152,000 copies per 106 leukocytes, while for the asymptomatic group this value was 12,050. Symptomatic patients showed high, protracted HCMV DNA levels, whereas asymptomatic patients demonstrated intermittent low or moderate levels. Using a cut-off value of 100,000 copies per 106 leukocytes, the limiting dilution assay had sensitivity of 100%, specificity of 92%, a positive predictive value of 43% and a negative predictive value of 100% for HCMV disease. In this patient group, there was universal HCMV infection but relatively infrequent symptomatic HCMV disease. The two patient groups were readily distinguished by monitoring with the limiting dilution assay, an extremely simple technology immediately applicable in any clinical laboratory with PCR capability.
Resumo:
Little is known about clinical differences associated with cytomegalovirus (CMV) infection by distinct strains in renal transplant patients. Different clinical pictures may be associated with specific viral genotypes. viral load, as well as host factors. The objective of this study was to identify CMV strains to determine viral load (antigenemia), and their correlation with clinical data in renal transplant recipients. Seventy-one patients were enrolled, comprising 91 samples. After selection, polymorphonuclear cells were used to amplify and sequence the gB region of CMV DNA. The sequences were analyzed to ascertain the frequency of different genotypes. Additionally, the results of this Study showed that the gB coding gene presents a great variability, revealing a variety of patterns: classical gB (1.4%), gB1V (46.4%), classical gB2 (35.2%), gB2V (2.8%), gB3 (1.4%), classical gB4 (4.9%) and gB4V (4.9%). The mean viral load in kidney transplant patient was 75.1 positive cells (1-1000). A higher viral load was observed in patients with genotype 4 infection. Statistically significant differences were detected between gB1 and gB4 (p=0.010), and between gB2 and gB4 (p=0.021). The average numbers of positive cells in relation to clinical presentation were: 34.5 in asymptomatic, 49.5 in CMV associated syndrome and 120.7 in patients with invasive disease (p=0.048). As a group, gB1 was the most frequent strain and revealed a potential risk for developing invasive disease. Viral load also seemed to be important as a marker associated with clinical presentation of the disease. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Mechanistic insights to viral replication and pathogenesis generally have come from the analysis of viral gene products, either by studying their biochemical activities and interactions individually or by creating mutant viruses and analyzing their phenotype. Now it is possible to identify and catalog the host cell genes whose mRNA levels change in response to a pathogen. We have used DNA array technology to monitor the level of ≈6,600 human mRNAs in uninfected as compared with human cytomegalovirus-infected cells. The level of 258 mRNAs changed by a factor of 4 or more before the onset of viral DNA replication. Several of these mRNAs encode gene products that might play key roles in virus-induced pathogenesis, identifying them as intriguing targets for further study.
Resumo:
The human cytomegalovirus UL97 kinase, an important target of antiviral therapy, has an impact on at least two distinct phases of viral replication. Compared with wild-type virus, the UL97 deletion mutant exhibits an early replication defect that reduces DNA accumulation by 4- to 6-fold, as well as a late capsid maturation defect responsible for most of the observed 100- to 1000-fold reduction in replication. Block-release experiments with the antiviral 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl)-benzimidazole revealed an important role for UL97 kinase in capsid assembly. Although cleavage of concatemeric DNA intermediates to unit-length genomes remained unaffected, progeny mutant virus maturation was delayed, with accumulation of progeny at significantly reduced levels compared with wild type after release of this block. Transmission electron microscopy confirmed the aberrant accumulation of empty A-like capsids containing neither viral DNA nor an internal scaffold structure, consistent with a failure to stably package DNA in mutant virus-infected cells. The function of UL97 in DNA synthesis as well as capsid assembly suggests that protein phosphorylation mediated by this herpesvirus-conserved kinase increases the efficiency of these two distinct phases of virus replication.
Resumo:
Previous studies indicated that patients with atherosclerosis are predominantly infected by human cytomegalovirus (HCMV), but rarely infected by type 1 Epstein-Barr virus (EBV-1). In this study, atheromas of 30 patients who underwent aortocoronary bypass surgery with coronary endartherectomy were tested for the presence of these two viruses. HCMV occurred in 93.3% of the samples and EBV-1 was present in 50% of them. Concurrent presence of both pathogens was detected in 43.3% of the samples.
Resumo:
OBJECTIVE: To determine contribution of reinfection with new strains of cytomegalovirus in cytomegalovirus seromimmune women to incidence of congenital cytomegalovirus infection. STUDY DESIGN: In 7848 women studied prospectively for congenital cytomegalovirus infection from a population with near universal cytomegalovirus seroimmunity, sera from 40 mothers of congenitally infected infants and 109 mothers of uninfected newborns were analyzed for strain-specific anticytomegalovirus antibodies. RESULTS: All women were cytomegalovirus seroimmune at first prenatal visit. Reactivity for 2 cytomegalovirus strains was found in 14 of 40 study mothers and in 17 of 109 control mothers at first prenatal visit (P=.009). Seven of 40 (17.5%) study women and 5 of 109 (4.6%) controls (P=.002) acquired antibodies reactive with new cytomegalovirus strains during pregnancy. Evidence of infection with more than 1 strain of cytomegalovirus before or during current pregnancy occurred in 21 of 40 study mothers and 22 of 109 controls (P<.0001). CONCLUSION: Maternal reinfection by new strains of cytomegalovirus is a major source of congenital infection in this population.
Resumo:
Human cytomegalovirus (HCMV) can establish both nonproductive (latent) and productive (lytic) infections. Many of the proteins expressed during these phases of infection could be expected to be targets of the immune response; however, much of our understanding of the CD8(+)-T-cell response to HCMV is mainly based on the pp65 antigen. Very little is known about T-cell control over other antigens expressed during the different stages of virus infection; this imbalance in our understanding undermines the importance of these antigens in several aspects of HCMV disease pathogenesis. In the present study, an efficient and rapid strategy based on predictive bioinformatics and ex vivo functional T-cell assays was adopted to profile CD8(+)-T-cell responses to a large panel of HCMV antigens expressed during different phases of replication. These studies revealed that CD8(+)-T-cell responses to HCMV often contained multiple antigen-specific reactivities, which were not just constrained to the previously identified pp65 or IE-1 antigens. Unexpectedly, a number of viral proteins including structural, early/late antigens and HCMV-encoded immunomodulators (pp28, pp50, gH, gB, US2, US3, US6, and UL18) were also identified as potential targets for HCMV-specific CD8(+)-T-cell immunity. Based on this extensive analysis, numerous novel HCMV peptide epitopes and their HLA-restricting determinants recognized by these T cells have been defined. These observations contrast with previous findings that viral interference with the antigen-processing pathway during lytic infection would render immediate-early and early/late proteins less immunogenic. This work strongly suggests that successful HCMV-specific immune control in healthy virus carriers is dependent on a strong T-cell response towards a broad repertoire of antigens.
Resumo:
This article describes the standardization and evaluation of an in-house specific IgG avidity ELISA for distinguishing recent primary from long-term human cytomegalovirus (HCMV) infection. The test was standardized with the commercial kit ETI-CYTOK G Plus (Sorin Biomedica, Italy) using 8 M urea in phosphate-buffered saline to dissociate low-avidity antibodies after the antigen-antibody interaction. The performance of the in-house assay was compared to that of the commercial automated VIDAS CMV IgG avidity test (bioMérieux, France). Forty-nine sera, 24 from patients with a recent primary HCMV infection and 25 from patients with a long-term HCMV infection and a sustained persistence of specific IgM antibodies, were tested. Similar results were obtained with the two avidity methods. All 24 sera from patients with recently acquired infection had avidity indices compatible with acute HCMV infection by the VIDAS method, whereas with the in-house method, one serum sample had an equivocal result. In the 25 sera from patients with long-term infection, identical results were obtained with the two methods, with only one serum sample having an incompatible value. These findings suggest that our in-house avidity test could be a potentially useful tool for the immunodiagnosis of HCMV infection.
Resumo:
Seroprevalence of HCMV in Costa Rica is greater than 95% in adults; primary infections occur early in life and is the most frequent congenital infection in newborns. The objectives of this study were to determine the genetic variability and genotypes of HCMV gB gene in Costa Rica. Samples were collected from alcoholics, pregnant women, blood donors, AIDS patients, hematology-oncology (HO) children and HCMV isolates from neonates with cytomegalic inclusion disease. A semi-nested PCR system was used to obtain a product of 293-296 bp of the gB gene to be analyzed by Single Stranded Conformational Polymorphism (SSCP) and sequencing to determine the genetic polymorphic pattern and genotypes, respectively. AIDS patients showed the highest polymorphic diversity with 14 different patterns while fifty-six percent of HO children samples showed the same polymorphic pattern, suggesting in this group a possible nosocomial infection. In neonates three genotypes (gB1, gB2 and gB3), were determined while AIDS patients and blood donors only showed one (gB2). Of all samples analyzed only genotypes gB1, 2 and 3 were determined, genotype gB2 was the most frequent (73%) and mixed infections were not detected. The results of the study indicate that SSCP could be an important tool to detect HCMV intra-hospital infections and suggests a need to include additional study populations to better determine the genotype diversity and prevalence.