1000 resultados para Human coronavirus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human coronavirus 229E (HCoV-229E) replicase gene-encoded nonstructural protein 13 (nsp13) contains an N-terminal zinc-binding domain and a C-terminal superfamily 1 helicase domain. A histidine-tagged form of nsp13, which was expressed in insect cells and purified, is reported to unwind efficiently both partial-duplex RNA and DNA of up to several hundred base pairs. Characterization of the nsp13-associated nucleoside triphosphatase (NTPase) activities revealed that all natural ribonucleotides and nucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed most efficiently. Using the NTPase active site, HCoV-229E nsp13 also mediates RNA 5'-triphosphatase activity, which may be involved in the capping of viral RNAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human coronavirus 229E replicase gene encodes a protein, p66HEL, that contains a putative zinc finger structure linked to a putative superfamily (SF) 1 helicase. A histidine-tagged form of this protein, HEL, was expressed using baculovirus vectors in insect cells. The purified recombinant protein had in vitro ATPase activity that was strongly stimulated by poly(U), poly(dT), poly(C), and poly(dA), but not by poly(G). The recombinant protein also had both RNA and DNA duplex-unwinding activities with 5'-to-3' polarity. The DNA helicase activity of the enzyme preferentially unwound 5'-oligopyrimidine-tailed, partial-duplex substrates and required a tail length of at least 10 nucleotides for effective unwinding. The combined data suggest that the coronaviral SF1 helicase functionally differs from the previously characterized RNA virus SF2 helicases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the clinical impact of human coronaviruses (HCoV) OC43, 229E, HKU1 and NL63 in pediatric patients with cystic fibrosis (CF) during routine and exacerbation visits. A total of 408 nasopharyngeal aspirate samples were obtained from 103 patients over a 1-year period. Samples positive for HCoV were submitted for nucleotide sequencing to determine the species. Nineteen samples (4.65%) were positive for HCoV, of which 8 were positive for NL63, 6 for OC43, 4 for HKU1, and 1 for 229E. Identification of HCoV was not associated with an increased rate of respiratory exacerbations, but NL63-positive patients had higher exacerbation rates than patients who were positive for other HCoV species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronavirus NL63 has been identified as a new member of the coronavirus genus, but its role as a cause of respiratory disease needs to be established. We studied the first episode of lower respiratory tract symptoms in a cohort of healthy neonates. NL63 was identified in 6 (7%) of 82 cases and was as frequent as other coronaviruses (9%). NL63 was recovered at the onset of symptoms and was cleared within 3 weeks in half of the cases. Our data suggests that coronavirus NL63 causes lower respiratory tract symptoms and is acquired in early life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3' end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. IMPORTANCE The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a large sample of African bats and characterizing several bat viruses on a full-genome level. Our evolutionary analyses show that animal and human viruses are genetically closely related, can exchange genetic material, and form a single viral species. We show that the putative host switches leading to the formation of HCoV-229E were accompanied by major genomic changes, including deletions in the viral spike glycoprotein gene and loss of an open reading frame. We reanalyze a previously described genetically related alpaca virus and discuss the role of camelids as potential intermediate hosts between bat and human viruses. The evolutionary history of HCoV-229E likely shares important characteristics with that of the recently emerged highly pathogenic Middle East respiratory syndrome (MERS) coronavirus.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Replication of the ~30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The key enzyme in coronavirus replicase polyprotein processing is the coronavirus main protease, 3CL(pro). The substrate specificities of five coronavirus main proteases, including the prototypic enzymes from the coronavirus groups I, II and III, were characterized. Recombinant main proteases of human coronavirus (HCoV), transmissible gastroenteritis virus (TGEV), feline infectious peritonitis virus, avian infectious bronchitis virus and mouse hepatitis virus (MHV) were tested in peptide-based trans-cleavage assays. The determination of relative rate constants for a set of corresponding HCoV, TGEV and MHV 3CL(pro) cleavage sites revealed a conserved ranking of these sites. Furthermore, a synthetic peptide representing the N-terminal HCoV 3CL(pro) cleavage site was shown to be effectively hydrolysed by noncognate main proteases. The data show that the differential cleavage kinetics of sites within pp1a/pp1ab are a conserved feature of coronavirus main proteases and lead us to predict similar processing kinetics for the replicase polyproteins of all coronaviruses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Formation of the coronavirus replication-transcription complex involves the synthesis of large polyprotein precursors that are extensively processed by virus-encoded cysteine proteases. In this study, the coding sequence of the feline infectious peritonitis virus (FIPV) main protease, 3CL(pro), was determined. Comparative sequence analyses revealed that FIPV 3CL(pro) and other coronavirus main proteases are related most closely to the 3C-like proteases of potyviruses. The predicted active centre of the coronavirus enzymes has accepted unique replacements that were probed by extensive mutational analysis. The wild-type FIPV 3CL(pro) domain and 25 mutants were expressed in Escherichia coli and tested for proteolytic activity in a peptide-based assay. The data strongly suggest that, first, the FIPV 3CL(pro) catalytic system employs His(41) and Cys(144) as the principal catalytic residues. Second, the amino acids Tyr(160) and His(162), which are part of the conserved sequence signature Tyr(160)-Met(161)-His(162) and are believed to be involved in substrate recognition, were found to be indispensable for proteolytic activity. Third, replacements of Gly(83) and Asn(64), which were candidates to occupy the position spatially equivalent to that of the catalytic Asp residue of chymotrypsin-like proteases, resulted in proteolytically active proteins. Surprisingly, some of the Asn(64) mutants even exhibited strongly increased activities. Similar results were obtained for human coronavirus (HCoV) 3CL(pro) mutants in which the equivalent Asn residue (HCoV 3CL(pro) Asn(64)) was substituted. These data lead us to conclude that both the catalytic systems and substrate-binding pockets of coronavirus main proteases differ from those of other RNA virus 3C and 3C-like proteases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. IMPORTANCE Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new betacoronavirus-Middle East respiratory syndrome coronavirus (MERS-CoV)-has been identified in patients with severe acute respiratory infection. Although related viruses infect bats, molecular clock analyses have been unable to identify direct ancestors of MERS-CoV. Anecdotal exposure histories suggest that patients had been in contact with dromedary camels or goats. We investigated possible animal reservoirs of MERS-CoV by assessing specific serum antibodies in livestock. METHODS: We took sera from animals in the Middle East (Oman) and from elsewhere (Spain, Netherlands, Chile). Cattle (n=80), sheep (n=40), goats (n=40), dromedary camels (n=155), and various other camelid species (n=34) were tested for specific serum IgG by protein microarray using the receptor-binding S1 subunits of spike proteins of MERS-CoV, severe acute respiratory syndrome coronavirus, and human coronavirus OC43. Results were confirmed by virus neutralisation tests for MERS-CoV and bovine coronavirus. FINDINGS: 50 of 50 (100%) sera from Omani camels and 15 of 105 (14%) from Spanish camels had protein-specific antibodies against MERS-CoV spike. Sera from European sheep, goats, cattle, and other camelids had no such antibodies. MERS-CoV neutralising antibody titres varied between 1/320 and 1/2560 for the Omani camel sera and between 1/20 and 1/320 for the Spanish camel sera. There was no evidence for cross-neutralisation by bovine coronavirus antibodies. INTERPRETATION: MERS-CoV or a related virus has infected camel populations. Both titres and seroprevalences in sera from different locations in Oman suggest widespread infection. FUNDING: European Union, European Centre For Disease Prevention and Control, Deutsche Forschungsgemeinschaft.