999 resultados para Human Metapneumovirus (hmpv)
Resumo:
The present study suggests that human metapneumovirus (hMPV) is an important cause of community acquired respiratory infections in children. We report the detection of hMPV in a pediatric population with influenza-like illness in the subtropical area of Yucatan in Mexico. Our data also shows that hMPV circulates in the community with other respiratory pathogens.
Resumo:
Background Limited information is available on the role of human metapneumovirus (HMPV) as the unique pathogen among children hospitalized for community-acquired pneumonia (CAP) in a tropical region. Objective We aimed to describe HMPV infection among children with CAP investigating bacterial and viral co-infections. Patients and methods A prospective study was carried out in Salvador, North-East Brazil. Overall, 268 children aged <5 years hospitalized for CAP were enrolled. Human metapneumovirus RNA was detected in nasopharyngeal aspirates (NPA) by reverse transcription polymerase chain reaction. Sixteen other bacterial and viral pathogens were investigated by an expanded panel of laboratory methods. Chest X-ray taken on admission was read by an independent paediatric radiologist unaware of clinical information or the established aetiology. Results Human metapneumovirus RNA was detected in NPAs of 11 (4.1%) children, of which 4 (36%) had sole HMPV infection. The disease was significantly shorter among patients with sole HMPV infection in comparison with patients with mixed infection (4 +/- 1 versus 7 +/- 2 days, P = 0.03). Three of those four patients had alveolar infiltrates. Conclusion Sole HMPV infection was detected in children with CAP in Salvador, North-East Brazil. HMPV may play a role in the childhood CAP burden.
Resumo:
Epidemiological and molecular characteristics of human metapneumovirus (hMPV) were compared with human respiratory syncytial virus (hRSV) in infants and young children admitted for acute lower respiratory tract infections in a prospective study during four consecutive years in subtropical Brazil. GeneScan polymerase chain assays (GeneScan RT-PCR) were used to detect hMPV and hRSV in nasopharyngeal aspirates of 1,670 children during January 2003 to December 2006. hMPV and hRSV were detected, respectively, in 191 (11.4%) and in 702 (42%) of the children admitted with acute lower respiratory tract infections at the Sao Paulo University Hospital. Sequencing data of the hMPV F gene revealed that two groups of the virus, each divided into two subgroups, co-circulated during three consecutive years. It was also shown that a clear dominance of genotype B1 occurred during the years 2004 and 2005, followed by genotype A2 during 2006. J. Med. Virol. 81:915-921,2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Human metapneumovirus (hMPV) is a significant cause of acute lower respiratory tract infection in all age groups, particularly in children. Two genetic groups and four subgroups of hMPV have been described. They co-circulate during an epidemic in variable proportions. The aims were to characterize the genotypes of hMPV recovered from children hospitalized for acute lower respiratory tract infection and to establish the molecular epidemiology of strains circulating in Santiago of Chile during a 2-year period. The detection of the N gene by reverse-transcription polymerase chain reaction was carried out for screening 545 infants hospitalized for acute lower respiratory tract infection in Santiago during 2003-2004. The genetic typing of hMPV was performed by analyzing the fusion gene sequences. hMPV was detected in 10.2% (56/545 cases). Phylogenetic analysis of F gene sequences from 39 Chilean hMPV strains identified the two groups and four subgroups previously described. Strains clustered into group A were split further into the sub lineages A1, A2, and A3. Most Chilean strains clustered into the proposed novel A3 sub lineage (59%). A3 viruses were present in both years, while A1 and A2 circulated just in I year. In conclusion, hMPV is a relevant cause of acute lower respiratory infection in Chilean children and the potential novel cluster of group A emphasize the need for further regional genetic variability studies. J. Med. Virol. 81:340-344, 2009. (c) 2008 Wiley-Liss, Inc.
Resumo:
Human metapneumovirus (hMPV) has emerged as an important human respiratory pathogen causing upper and lower respiratory tract infections in young children and older adults. In addition, hMPV infection is associated with asthma exacerbation in young children. Recent epidemiological evidence indicates that hMPV may cocircullate with human respiratory syncytial virus (hRSV) and mediate clinical disease similar to that seen with hRSV. Therefore, a vaccine for hMPV is highly desirable. In the present study, we used predictive bioinformatics, peptide immunization, and functional T-cell assays to define hMPV cytotoxic T-lymphocyte (CTL) epitopes recognized by mouse T cells restricted through several major histocompatibility complex class I alleles, including HILA-A*0201. We demonstrate that peptide immunization with hMPV CTL epitopes reduces viral load and immunopathollogy in the lungs of hMPV-challenged mice and enhances the expression of Th1-type cytokines (gamma interferon and interleukin-12 [IL-12]) in lungs and regional lymph nodes. In addition, we show that levels of Th2-type cytolkines (IL-10 and IL-4) are significantly lower in hMPV CTL epitope-vaccinated mice challenged with hMPV. These results demonstrate for the first time the efficacy of an hMPV CTL epitope vaccine in the control of hMPV infection in a murine model.
Resumo:
The molecular epidemiologic profile of human metapneumovirus (hMPV) infection has likely been skewed toward certain genetic subtypes because of assay-design issues, and no comprehensive studies have been conducted to date. Here, reverse-transcription polymerase chain reaction was used to screen 10,319 specimens from patients presenting to hospitals with suspected respiratory tract infections during 2001 - 2004. After analysis of 727 Australian hMPV strains, 640 were assigned to 1 of 4 previously described subtypes. hMPV was the most common pathogen detected, and subtype B1 was the most common lineage. Concurrent, annual circulation of all 4 hMPV subtypes in our study population was common, with a single, usually different hMPV subtype predominating in each year.
Resumo:
Human metapneumovirus (HMPV) is a recently discovered pathogen first identified in respiratory specimens from young children suffering from clinical respiratory syndromes ranging from mild to severe lower respiratory tract illness. HMPV has worldwide prevalence, and is a leading cause of respiratory tract infection in the first years of life, with a spectrum of disease similar to respiratory syncytial virus (RSV). The disease burden associated with HMPV infection has not been fully elucidated; however, studies indicate that HMPV may cause upper or lower respiratory tract illness in patients between ages 2 months and 87 years, may co-circulate with RSV, and HMPV infection may be associated with asthma exacerbation. The mechanisms and effector pathways contributing to immunity or disease pathogenesis following infection are not fully understood; however, given the clinical significance of HMPV, there is a need for a fundamental understanding of the immune and pathophysiological processes that occur following infection to provide the foundation necessary for the development of effective vaccine or therapeutic intervention strategies. This review provides a current perspective on the processes associated with HMPV infection, immunity, and disease pathogenesis. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
We examined 10,025 respiratory samples collected for 4 years (2001-2004) and found a 7.1% average annual incidence of human meta pneumovirus. The epidemic peak of infection was late winter to spring, and genotyping showed a change in predominant viral genotype in 3 of the 4 years.
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
As doenças do trato respiratório são as principais queixas nos serviços de atendimento médico, sendo as infecções respiratórias agudas (IRA) as manifestações mais comuns, principalmente em crianças menores de cinco anos de idade. Em países em desenvolvimento, as IRA constituem um sério problema de saúde pública. Em todo mundo estima-se que ocorram cerca de 2 milhões de mortes devido as IRA a cada ano. Dentre os agentes causais de IRA, destaca-se o Metapneumovírus Humano (HMPV), especialmente por causar doença grave em crianças menores de 5 anos. Com o objetivo de gerar dados sobre a epidemiologia molecular deste vírus, foram analisadas amostras colhidas de pacientes com IRA no período de Janeiro de 2009 a Dezembro de 2011 oriundas da Região Norte (Pará, Amazonas, Acre, Amapá e Roraima). Foi utilizado a técnica de RT-PCR em Tempo Real (qRT-PCR) para a detecção do vírus através da amplificação do gene N e RT-PCR para o gene codificador da proteína F, que foi em seguida parcialmente sequenciado. Dentro do período de estudo, foram testadas 2966 amostras, das quais 129 positivas para HMPV. A faixa etária de 0-4 anos foi a que concentrou maior número de casos (n=84; 65,89%) em toda a região Norte. Na identificação viral, constatou-se a co-circulação dos subgrupos A2 e B2 durante os três anos do estudo. Os subgrupos A1 e B1 não circularam na região durante o período estudado. Este estudo representa o primeiro relato sobre dados da epidemiologia molecular do Metapneumovírus Humano na região Norte do Brasil.
Resumo:
We analyzed 64 human metapneumovirus strains from eight countries. Phylogenetic analysis identified two groups (A and B, amino acid identity 93%-96%) and four subgroups. Although group A strains predominated, accounting for 69% of all strains, as many B as A strains were found in persons greater than or equal to3 years of age.
Resumo:
Viruses are the major cause of pediatric acute respiratory tract infection (ARTI) and yet many suspected cases of infection remain uncharacterized. We employed 17 PCR assays and retrospectively screened 315 specimens selected by season from a predominantly pediatric hospital-based population. Before the Brisbane respiratory virus research study commenced, one or more predominantly viral pathogens had been detected in 15.2% (n = 48) of all specimens. The Brisbane study made an additional 206 viral detections, resulting in the identification of a microbe in 67.0% of specimens. After our study, the majority of microbes detected were RNA viruses (89.9%). Overall, human rhinoviruses (HRVs) were the most frequently identified target (n=140) followed by human adenoviruses (HAdVs; n = 25), human metapneumovirus (HMPV; n=18), human bocavirus (HBoV; n = 15), human respiratory syncytial virus (HRSV; n = 12), human coronaviruses (HCoVs; n = 11), and human herpesvirus-6 (n = 11). HRVs were the sole microbe detected in 37.8% (n = 31) of patients with suspected lower respiratory tract infection (LRTI). Genotyping of the HRV VP4/VP2 region resulted in a proposed subdivision of HRV type A into sublineages A1 and A2. Most of the genotyped HAdV strains were found to be type C. This study describes the high microbial burden imposed by HRVs, HMPV, HRSV, HCoVs, and the newly identified virus, HBoV on a predominantly paediatric hospital population with suspected acute respiratory tract infections and proposes a new formulation of viral targets for future diagnostic research studies.
Resumo:
Acute lower respiratory tract infections (ALRTIs) are a common cause of morbidity and mortality among children under 5 years of age and are found worldwide, with pneumonia as the most severe manifestation. Although the incidence of severe disease varies both between individuals and countries, there is still no clear understanding of what causes this variation. Studies of community-acquired pneumonia (CAP) have traditionally not focused on viral causes of disease due to a paucity of diagnostic tools. However, with the emergence of molecular techniques, it is now known that viruses outnumber bacteria as the etiological agents of childhood CAP, especially in children under 2 years of age. The main objective of this study was to investigate viruses contributing to disease severity in cases of childhood ALRTI, using a two year cohort study following 2014 infants and children enrolled in Bandung, Indonesia. A total of 352 nasopharyngeal washes collected from 256 paediatric ALRTI patients were used for analysis. A subset of samples was screened using a novel microarray pathogen detection method that identified respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and human rhinovirus (HRV) in the samples. Real-time RT-PCR was used both for confirming and quantifying viruses found in the nasopharyngeal samples. Viral copy numbers were determined and normalised to the numbers of human cells collected with the use of 18S rRNA. Molecular epidemiology was performed for RSV A and hMPV using sequences to the glycoprotein gene and nucleoprotein gene respectively, to determine genotypes circulating in this Indonesian paediatric cohort. This study found that HRV (119/352; 33.8%) was the most common virus detected as the cause of respiratory tract infections in this cohort, followed by the viral pathogens RSV A (73/352; 20.7%), hMPV (30/352; 8.5%) and RSV B (12/352; 3.4%). Co-infections of more than two viruses were detected in 31 episodes (defined as an infection which occurred more than two weeks apart), accounting for 8.8% of the 352 samples tested or 15.4% of the 201 episodes with at least one virus detected. RSV A genotypes circulating in this population were predominantly GA2, GA5 and GA7, while hMPV genotypes circulating were mainly A2a (27/30; 90.0%), B2 (2/30; 6.7%) and A1 (1/30; 3.3%). This study found no evidence of disease severity associated either with a specific virus or viral strain, or with viral load. However, this study did find a significant association with co-infection of RSV A and HRV with severe disease (P = 0.006), suggesting that this may be a novel cause of severe disease.