989 resultados para Human Hyaluronan Synthase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Down syndrome (DS) is a common birth defect characterized by the trisomy of chromosome 21. DS-affected umbilical cords (UCs) of fetuses show altered architecture of the extracellular matrix. Overexpression of the chromosome 21 genes encoding the collagen type VI (COLVI) chains α1(VI) and α2(VI), COL6A1 and COL6A2, respectively, has also reported to occur in the nuchal skin of DS fetuses. The aim of this study was therefore to evaluate the COLVI content in euploid and DS-affected UCs and human skin fibroblasts, and to investigate the relationships between COLVI and hyaluronan (HA) and HA synthase-2 (HAS2). We found that the UCs of DS fetuses showed denser staining of COLVI and increased COL6A2 expression at both early and term gestational ages. In vitro expression studies in DS-derived fibroblasts showed similarly increased amounts of α1(VI) and α2(VI) chains at the protein and transcriptional level, supporting the hypothesis of the gene dosage effect. Furthermore, increased levels of HA and HAS2 were also found in DS-derived skin fibroblast cultures. Notably, silencing of COL6A2 in DS-derived cells resulted in downregulation of HAS2, with a simultaneous decrease in secreted HA. Exogenous addition of COLVI to normal fibroblasts did not have any effect on HAS2 expression. In conclusion, UCs and skin fibroblasts in DS show significant increases in COLVI and HA; the overexpression of COL6A2 in DS tissue and cells is closely related to the increased expression of HAS2. These data may explain the DS phenotypes and their effects in organ tissue maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Periodontal wound healing and regeneration require that new matrix be synthesized, creating an environment into which cells can migrate. One agent which has been described as promoting periodontal regeneration is an enamel matrix protein derivative (EMD). Since no specific growth factors have been identified in EMD preparations, it is postulated that EMD acts as a matrix enhancement factor. This study was designed to investigate the effect of EMD in vitro on matrix synthesis by cultured periodontal fibroblasts. Methods: The matrix response of the cells was evaluated by determination of the total proteoglycan synthesis, glycosaminoglycan profile, and hyaluronan synthesis by the uptake of radiolabeled precursors. The response of the individual proteoglycans, versican, decorin, and biglycan were examined at the mRNA level by Northern blot analysis. Hyaluronan synthesis was probed by identifying the isotypes of hyaluronan synthase (HAS) expressed in periodontal fibroblasts as HAS-2 and HAS-3 and the effect of EMD on the levels of mRNA for each enzyme was monitored by reverse transcription polymerase chain reaction (RTPCR). Comparisons were made between gingival fibroblast (GF) cells and periodontal ligament (PDLF) cells. Results: EMD was found to significantly affect the synthesis of the mRNAs for the matrix proteoglycans versican, biglycan, and decorin, producing a response similar to, but potentially greater than, mitogenic cytokines. EMD also stimulated hyaluronan synthesis in both GF and PDLF cells. Although mRNA for HAS-2 was elevated in GF after exposure to EMD, the PDLF did not show a similar response. Therefore, the point at which the stimulation of hyaluronan becomes effective may not be at the level of stimulation of the mRNA for hyaluronan synthase, but, rather, at a later point in the pathway of regulation of hyaluronan synthesis. In all cases, GF cells appeared to be more responsive to EMD than PDLF cells in vitro. Conclusions: EMD has the potential to significantly modulate matrix synthesis in a manner consistent with early regenerative events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DG42 is one of the main mRNAs expressed during gastrulation in embryos of Xenopus laevis. Here we demonstrate that cells expressing this mRNA synthesize hyaluronan. The cloned DG42 cDNA was expressed in rabbit kidney (RK13) and human osteosarcoma (tk-) cells using a vaccinia virus system. Lysates prepared from infected cells were incubated in the presence of UDP-N-acetylglucosamine and UDP-[14C]glucuronic acid. This yielded a glycosaminoglycan with a molecular mass of about 200,000 Da. Formation of this product was only observed in the presence of both substrates. The glycosaminoglycan could be digested with testicular hyaluronidase and with Streptomyces hyaluronate lyase but not with Serratia chitinase. Hyaluronan synthase activity could also be detected in homogenates of early Xenopus embryos, and the activity was found to correlate with the expression of DG42 mRNA at different stages of development. Synthesis of hyaluronan is thus an early event after midblastula transition, indicating its importance for the ensuing cell movements in the developing embryo. Our results are at variance with a recent report (Semino, C. E. & Robbins, P. W. (1995) Proc. Natl. Acad. Sci. USA 92, 3498-3501) that DG42 codes for an enzyme that catalyzes the synthesis of chitin-like oligosaccharides.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes have been shown to be regulated in response to growth factors. During tumor progression hyaluronan stimulates tumor cell growth and invasiveness. Thus, elucidation of the molecular mechanisms which regulate the activities of hyaluronan-synthesizing and -degrading enzymes during tumor progression is highly desired.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Familial hyperaldosteronism type II (FH-II) is caused by adrenocortical hyperplasia or aldosteronoma or both and is frequently transmitted in an autosomal dominant fashion. Unlike FH type I (FI-I-I), which results from fusion of the CYP11B1 and CYP11B2 genes, hyperaldosteronism in FH-II is not glucocorticoid remediable. A large family with FH-II was used for a genome wide search and its members were evaluated by measuring the aldosterone:renin ratio. In those with an increased ratio, FH-II was confirmed by fludrocortisone suppression testing. After excluding most of the genome, genetic linkage was identified with a maximum two point lod score of 3.26 at theta =0, between FH-II in this family and the polymorphic markers D7S511, D7S517, and GATA24F03 on chromosome 7,a region that corresponds to cytogenetic band 7p22. This is the first identified locus for FH-II; its molecular elucidation may provide further insight into the aetiology of primary aldosteronism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To evaluate the local immune response in patients with bacterial vaginosis (BV) and cervical intraepithelial neoplasia (CIN), as assessed by cytokine and nitric oxide (NO) concentrations. Study design: Patients attending for routine gynaecological examination were prospectively enrolled in groups: BV (n = 25) diagnosed by clinical criteria, CIN graded I to III (n = 35, 6 CIN 1, 8 CIN 11 and 21 CIN 111) by histological analysis, and controls (n = 15) without clinical and cytological findings. Randomly selected patients within CIN group at grades 11 or III (n = 15) were re-evaluated at 60 days after surgical treatment. Endocervical (EC) and vaginal secretion samples were collected by cytobrush and the levels of cytokines (ELISA) and NO metabolite (Griess reaction) were assayed. Results: NO was assessed in all subjects, and cytokines in all controls, 15 BV and 30 CIN patients. Interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10) and nitrite levels were higher in EC than in vaginal secretions in BV and CIN groups. In CIN group, IL-8, IL-10 and nitrite concentrations were greater in EC and/or vaginal secretions than in BV or controls. Surgical treatment reduced IL-8 levels in EC and vaginal secretions. Conclusion: A similar local immune profile was found in BV and CIN groups. The increased local production of IL-8, IL-10 and NO in CIN suggests a role for these mediators in the immune response against tumour or tumour development. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oocyte-secreted factors (OSFs) regulate differentiation of cumulus cells and are of pivotal relevance for fertility. Bone morphogenetic protein 15 (BMP15) and fibroblast growth factor 10 (FGF10) are OSFs and enhance oocyte competence by unknown mechanisms. We tested the hypothesis that BMP15 and FGF10, alone or combined in the maturation medium, enhance cumulus expansion and expression of genes in the preovulatory cascade and regulate glucose metabolism favouring hyaluronic acid production in bovine cumulus-oocyte complexes (COCs). BMP15 or FGF10 increased the percentage of fully expanded COCs, but the combination did not further stimulate it. BMP15 increased cumulus cell levels of mRNA encoding a disintegrin and metalloprotease 10 (ADAM10), ADAM17, amphiregulin (AREG), and epiregulin (EREG) at 12 h of culture and of prostaglandin (PG)-endoperoxide synthase 2 (PTGS2), pentraxin 3 (PTX3) and tumor necrosis factor alpha-induced protein 6 (TNFAIP6 (TSG6)) at 22 h of culture. FGF10 did not alter the expression of epidermal growth factor-like factors but enhanced the mRNA expression of PTGS2 at 4 h, PTX3 at 12 h, and TNFAIP6 at 22 h. FGF10 and BMP15 stimulated glucose consumption by cumulus cells but did not affect lactate production or levels of mRNA encoding glycolytic enzymes phosphofructokinase and lactate dehydrogenase A. Each growth factor increased mRNA encoding glucosamine:fructose-6-PO4 transaminases, key enzymes in the hexosamine pathway leading to hyaluronic acid production, and BMP15 also stimulated hyaluronan synthase 2 (HAS2) mRNA expression. This study provides evidence that BMP15 and FGF10 stimulate expansion of in vitro-matured bovine COCs by driving glucose metabolism toward hyaluronic acid production and controlling the expression of genes in the ovulatory cascade, the first acting upon ADAM10, ADAM17, AREG, and EREG and the second on downstream genes, particularly PTGS2. © 2013 Society for Reproduction and Fertility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was observed at 50 pg/ml hLIF, with maximal activity at 5 ng/ml. In the presence of the NOS inhibitor L-NAME, hLIF-induced activation of NOS was greatly decreased, however it was still 63-fold higher than in control (p < 0.05). SMC-DNA synthesis was significantly reduced (-47%) following incubation with hLIF plus L-arginine, the substrate required for NO production (p < 0.05), with no effect observed in the absence of L-arginine. Silastic cuff placement over the right carotid artery of rabbits resulted in a neointima 19.3 +/- 5.4% of total wall cross-sectional area, which was increased in the presence of L-NAME (27.0 +/- 2.0%; p < 0.05) and reduced in the presence of L-arginine (11.3 +/- 2.0%; p < 0.05). The effect of L-arginine was ameliorated by co-administration of L-NAME (16.4 +/- 1.5%). However, administration of L-NAME with hLIF had no effect on the potent inhibition of neointimal formation by hLIF (3.2 +/- 2.5 vs. 2.1 +/- 5.4%, respectively). Similarly, with hLIF administration, NOS activity in the cuffed carotid increased to 269.0 +/- 14.0% of saline-treated controls and remained significantly higher with coadministration of L-NAME (188.5 +/- 14.7%). These results indicate that hLIF causes superinduction of NO by SMC, and that it is, either partially or wholly, through this mechanism that hLIF is a potent inhibitor of neointimal formation in vivo and of smooth muscle proliferation in vitro.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitric oxide (NO) exerts important physiological and pathological roles in humans. The study of NO requires the immunolocalization of its synthesizing enzymes, neuronal, endothelial and inducible NO synthases (NOS). NOS are labile to formalin-fixation and paraffin-embedding, which are used to prepare human archival tissues. This lability has made NOS immunohistochemical studies difficult, and a detailed protocol is not yet available. We describe here a protocol for the immunolocalization of NOS isoforms in human archival cerebellum and non-nervous tissues, and in rat tissues and cultured cells. Neuronal NOS antigenicity in human archival and rat nervous tissue sections was microwave-retrieved in 50 mM Tris-HCl buffer, pH 9.5, for 20 min at 900W. Neuronal NOS was expressed in stellate, basket, Purkinje and granule cells in human and rat cerebellum. Archival and frozen human cerebellar sections showed the same neuronal NOS staining pattern. Archival cerebellar sections not subjected to antigen retrieval stained weakly. Antigenicity of inducible NOS in human lung was best retrieved in 10 mM sodium citrate buffer, pH 6.0, for 15 min at 900W. Inflammatory cells in a human lung tuberculoma were strongly stained by anti-inducible NOS antibody. Anti-endothelial NOS strongly stained kidney glomeruli. Cultured PC12 cells were strongly stained by anti-neuronal NOS without antigen retrieving. The present immunohistochemistry protocol is easy to perform, timeless, and suitable for the localization of NOS isoforms in nervous and non-nervous tissues, in human archival and rat tissues. It has been extensively used in our laboratory, and is also appropriate for other antigens. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immunocytochemical techniques were used to examine the distribution of neurons immunoreactive (-ir) for nitric oxide synthase (nNOS), somatostatin (SOM), neuropeptide Y (NPY), parvalbumin (PV), calbindin (CB) and calretinin (CH), in the inferotemporal gyros (Brodmann's area 21) of the human neocortex. Neurons that colocalized either nNOS or SOM with PV, CB or CR were also identified by double-labeling techniques. Furthermore, glutamate receptor subunit profiles (GluR1, GluR2/3, GluR2/4, GluR5/6/7 and NMDAR1) were also determined for these cells. The number and distribution of cells containing nNOS, SOM, NPY, PV, CB or CR differed for each antigen. In addition, distinct subpopulations of neurons displayed different degrees of colocalization of these antigens depending on which antigens were compared. Moreover, cells that contained nNOS, SOM, NPY, PV, GB or CR expressed different receptor subunit profiles. These results show that specific subpopulations of neurochemically identified nonpyramidal cells may be activated via different receptor subtypes. As these different subpopulations of cells project to specific regions of pyramidal calls, facilitation of subsets of these cells via different receptor subunits may activate different inhibitory circuits. Thus, various distinct, but overlapping, inhibitory circuits may act in concert in the modulation of normal cortical function, plasticity and disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim: 5-fluoro-2'-deoxyuridine (FdUrd) depletes the endogenous 5'-deoxythymidine triphosphate (dTTP) pool. We hypothesized whether uptake of exogenous dThd analogues could be favoured through a feedback enhanced salvage pathway and studied the FdUrd effect on cellular uptake of 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) and 5-125I-iodo-2'-deoxyuridine (125I-IdUrd) in different cancer cell lines in parallel. Methods: Cell uptake of 18F-FLT and 125I-IdUrd was studied in 2 human breast, 2 colon cancer and 2 glioblastoma lines. Cells were incubated with/without 1 µmol/l FdUrd for 1 h and, after washing, with 1.2 MBq 18F-FLT or 125I-IdUrd for 0.3 to 2 h. Cell bound 18F-FLT and 125I-IdUrd was counted and expressed in % incubated activity (%IA). Kinetics of 18F-FLT cell uptake and release were studied with/without FdUrd modulation. 2'-3H-methyl-fluorothymidine (2'-3H-FLT) uptake with/without FdUrd pretreatment was tested on U87 spheroids and monolayer cells. Results: Basal uptake at 2 h of 18F-FLT and 125I-IdUrd was in the range of 0.8-1.0 and 0.4-0.6 Bq/cell, respectively. FdUrd pretreatment enhanced 18F-FLT and 125I-IdUrd uptake 1.2-2.1 and 1.7-4.4 fold, respectively, while co-incubation with excess thymidine abrogated all 18F-FLT uptake. FdUrd enhanced 18F-FLT cellular inflow in 2 breast cancer lines by factors of 1.8 and 1.6, respectively, while outflow persisted at a slightly lower rate. 2'-3H-FLT basal uptake was very low while uptake increase after FdUrd was similar in U87 monolayer cells and spheroids. Conclusions: Basal uptake of 18F-FLT was frequently higher than that of 125I-IdUrd but FdUrd induced uptake enhancement was stronger for 125I-IdUrd in five of six cell lines. 18F-FLT outflow from cells might be an explanation for the observed difference with 125I-IdUrd.