802 resultados para Human Health Risk
Resumo:
Organic compounds in Australian coal seam gas produced water (CSG water) are poorly understood despite their environmental contamination potential. In this study, the presence of some organic substances is identified from government-held CSG water-quality data from the Bowen and Surat Basins, Queensland. These records revealed the presence of polycyclic aromatic hydrocarbons (PAHs) in 27% of samples of CSG water from the Walloon Coal Measures at concentrations <1 µg/L, and it is likely these compounds leached from in situ coals. PAHs identified from wells include naphthalene, phenanthrene, chrysene and dibenz[a,h]anthracene. In addition, the likelihood of coal-derived organic compounds leaching to groundwater is assessed by undertaking toxicity leaching experiments using coal rank and water chemistry as variables. These tests suggest higher molecular weight PAHs (including benzo[a]pyrene) leach from higher rank coals, whereas lower molecular weight PAHs leach at greater concentrations from lower rank coal. Some of the identified organic compounds have carcinogenic or health risk potential, but they are unlikely to be acutely toxic at the observed concentrations which are almost negligible (largely due to the hydrophobicity of such compounds). Hence, this study will be useful to practitioners assessing CSG water related environmental and health risk.
Resumo:
The research project developed a quantitative approach to assess the risk to human health from heavy metals and polycyclic aromatic hydrocarbons in urban stormwater based on traffic and land use factors. The research outcomes are expected to strengthen the scientifically robust management and reuse of urban stormwater. The innovative methodology developed can be applied to evaluate human health risk in relation to toxic chemical pollutants in urban stormwater runoff and for the development of effective risk mitigation strategies.
Resumo:
Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150µm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas.
Resumo:
This review paper discusses the use of Tellus and Tellus Border soil and stream geochemistry data to investigate the relationship between medical data and naturally occurring background levels of potentially toxic elements (PTEs) such as heavy metals in soils and water. The research hypothesis is that long-term low level oral exposure of PTEs via soil and water may result in cumulative exposures that may act as risk factors for progressive diseases including cancer and chronic kidney disease. A number of public policy implications for regional human health risk assessments, public health policy and education are also explored alongside the argument for better integration of multiple data sets to enhance ongoing medical and social research. This work presents a partnership between the School of Geography, Archaeology and Palaeoecology, Northern Ireland Cancer Registry, Queen’s University Belfast, and the nephrology (kidney medicine) research group.
Resumo:
Pseudo-total (i.e. aqua regia extractable) and gastric-bioaccessible (i.e. glycine + HCl extractable) concentrations of Ca, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in a total of 48 samples collected from six community urban gardens of different characteristics in the city of Madrid (Spain). Calcium carbonate appears to be the soil property that determines the bioaccessibility of a majority of those elements, and the lack of influence of organic matter, pH and texture can be explained by their low levels in the samples (organic matter) or their narrow range of variation (pH and texture). A conservative risk assessment with bioaccessible concentrations in two scenarios, i.e. adult urban farmers and children playing in urban gardens, revealed acceptable levels of risk, but with large differences between urban gardens depending on their history of land use and their proximity to busy areas in the city center. Only in a worst-case scenario in which children who use urban gardens as recreational areas also eat the produce grown in them would the risk exceed the limits of acceptability
Resumo:
"FS ; 412"
Resumo:
This study used the Australian Environmental Health Risk Assessment Framework to assess the human health risk of dioxin exposure through foods for local residents in two wards of Bien Hoa City, Vietnam. These wards are known hot-spots for dioxin and a range of stakeholders from central government to local levels were involved in this process. Publications on dioxin characteristics and toxicity were reviewed and dioxin concentrations in local soil, mud, foods, milk and blood samples were used as data for this risk assessment. A food frequency survey of 400 randomly selected households in these wards was conducted to provide data for exposure assessment. Results showed that local residents who had consumed locally cultivated foods, especially fresh water fish and bottom-feeding fish, free-ranging chicken, duck, and beef were at a very high risk, with their daily dioxin intake far exceeding the tolerable daily intake recommended by the WHO. Based on the results of this assessment, a multifaceted risk management program was developed and has been recognized as the first public health program ever to have been implemented in Vietnam to reduce the risks of dioxin exposure at dioxin hot-spots.
Resumo:
How can empirical evidence of adverse effects from exposure to noxious agents, which is often incomplete and uncertain, be used most appropriately to protect human health? We examine several important questions on the best uses of empirical evidence in regulatory risk management decision-making raised by the US Environmental Protection Agency (EPA)'s science-policy concerning uncertainty and variability in human health risk assessment. In our view, the US EPA (and other agencies that have adopted similar views of risk management) can often improve decision-making by decreasing reliance on default values and assumptions, particularly when causation is uncertain. This can be achieved by more fully exploiting decision-theoretic methods and criteria that explicitly account for uncertain, possibly conflicting scientific beliefs and that can be fully studied by advocates and adversaries of a policy choice, in administrative decision-making involving risk assessment. The substitution of decision-theoretic frameworks for default assumption-driven policies also allows stakeholder attitudes toward risk to be incorporated into policy debates, so that the public and risk managers can more explicitly identify the roles of risk-aversion or other attitudes toward risk and uncertainty in policy recommendations. Decision theory provides a sound scientific way explicitly to account for new knowledge and its effects on eventual policy choices. Although these improvements can complicate regulatory analyses, simplifying default assumptions can create substantial costs to society and can prematurely cut off consideration of new scientific insights (e.g., possible beneficial health effects from exposure to sufficiently low 'hormetic' doses of some agents). In many cases, the administrative burden of applying decision-analytic methods is likely to be more than offset by improved effectiveness of regulations in achieving desired goals. Because many foreign jurisdictions adopt US EPA reasoning and methods of risk analysis, it may be especially valuable to incorporate decision-theoretic principles that transcend local differences among jurisdictions.