1000 resultados para Human Eosinophilic Enteritis
Resumo:
Apart from their veterinary importance, the hookworms Ancylostoma caninum, Ancylostoma braziliense and Ancylostoma caninum are also capable of causing zoonotic disease in humans. A highly sensitive and species-specific PCR-RFLP technique was utilised to detect and differentiate the various canine Ancylostoma spp directly from eggs in faeces. This technique was utilised to screen 101 canine faecal samples from parasite endemic tea growing communities in Assam, India, as part as an ongoing epidemiological investigation into canine parasitic zoonoses. The prevalence of hookworms in dogs was found to be 98% using a combination of PCR and conventional microscopy. Overall, 36% of dogs were found positive for single hookworm infections with A. caninum, 24% positive for single infections with A. braziliense and 38% had mixed infections with both A. caninum and A. braziliense. No dogs were found positive for A. ceylanicum in the community under study. The high prevalence of A. caninum and A. braziliense in dogs in this community may account for the high incidence of cutaneous larva migrans (CLM) observed among the human population residing at the tea estates. The PCR-RFLP technique described herein allows epidemiological screening of canine hookworms to be conducted rapidly, with ease and accuracy, and has the potential to be applied to a number of different clinical, pharmacological and epidemiological situations. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Hookworms routinely reach the gut of nonpermissive hosts but fail to successfully feed, develop, and reproduce. To investigate the effects of host-parasite coevolution on the ability of hookworms to feed in nonpermissive hosts, we cloned and expressed aspartic proteases from canine and human hookworms. We show here that a cathepsin D-like protease from the canine hookworm Ancylosotoma caninum (Ac-APR-1) and the orthologous protease from the human hookworm Necator americanus (Na-APR-1) are expressed in the gut and probably exert their proteolytic activity extracellularly. Both proteases were detected immunologically and enzymatically in somatic extracts of adult worms. The two proteases were expressed in baculovirus, and both cleaved human and dog hemoglobin (Hb) in vitro. Each protease digested Hb from its permissive host between twofold (whole molecule) and sixfold (synthetic peptides) more efficiently than Hb from the nonpermissive host, despite the two proteases' having identical residues lining their active site clefts. Furthermore, both proteases cleaved Hb at numerous distinct sites and showed different substrate preferences. The findings suggest that the paradigm of matching the molecular structure of the food source within a host to the molecular structure of the catabolic proteases of the parasite is an important contributing factor for host-parasite compatibility and host species range.
Resumo:
Objective: To investigate possible routes for human infection by the dog hookworm (Ancylostoma caninum). Design, setting and participant. Relatively small numbers of infective larvae were administered orally and percutaneously to an informed healthy volunteer (J K L) under medical supervision, at intervals between May 1998 and May 1999. Main outcome measures: Symptoms; weekly blood eosinophil counts; faecal microscopy. Results: A marked blood eosinophilia followed a single oral exposure to 100 infective larvae, while faecal examination remained negative. Eosinophil counts then declined gradually, although a rapid, spontaneous rise several months later, at the beginning of spring, possibly indicated reactivation of dormant larvae. Blood eosinophil numbers did not rise significantly after percutaneous infection with 200 larvae. A subsequent, smaller, oral inoculum of 20 larvae provoked an eosinophil response similar to that of the first experiment. Conclusions: Our findings suggest that, following ingestion, some infective larvae of A. caninum develop directly into adult worms in the human gut (as they do in dogs). While the percutaneous route might be the most common means of human exposure to canine hookworm larvae, leading generally to subclinical infection, oral infection may be more likely to provoke symptomatic eosinophilic enteritis.
Resumo:
The rat lungworm Angiostrongylus cantonensis is a worldwide-distributed zoonotic nematode that can cause human eosinophilic meningoencephalitis. Here, for the first time, we report the isolation of A. cantonensis from Achatina fulica from two Brazilian states: Rio de Janeiro (specifically the municipalities of Barra do Piraí, situated at the Paraiba River Valley region and São Gonçalo, situated at the edge of Guanabara Bay) and Santa Catarina (in municipality of Joinville). The lungworms were identified by comparing morphological and morphometrical data obtained from adult worms to values obtained from experimental infections of A. cantonensis from Pernambuco, Brazil, and Akita, Japan. Only a few minor morphological differences that were determined to represent intra-specific variation were observed. This report of A. cantonensis in South and Southeast Brazil, together with the recent report of the zoonosis and parasite-infected molluscs in Northeast Brazil, provide evidence of the wide distribution of A. cantonensis in the country. The need for efforts to better understand the role of A. fulica in the transmission of meningoencephalitis in Brazil and the surveillance of molluscs and rodents, particularly in ports, is emphasized.
Resumo:
Angiostrongylus cantonensis is the most common aetiological agent of human eosinophilic meningoencephalitis. Following a report indicating the presence of this parasite in Brazil in 2007, the present study was undertaken to investigate the presence of A. cantonensis in the surrounding Brazilian port areas. In total, 30 ports were investigated and the following molluscs were identified: Achatina fulica, Belocaulus sp., Bradybaena similaris sp., Cyclodontina sp., Helix sp., Leptinaria sp., Melampus sp., Melanoides tuberculata, Phyllocaulis sp., Pomacea sp., Pseudoxychona sp., Rhinus sp., Sarasinula marginata, Streptaxis sp., Subulina octona, Succinea sp., Tomigerus sp., Wayampia sp. and specimens belonging to Limacidae and Orthalicinae. Digestion and sedimentation processes were performed and the sediments were examined. DNA was extracted from the obtained larvae and the internal transcribed spacer region 2 was analysed by polymerase chain reaction-restriction fragment length polymorphism after digestion with the endonuclease ClaI. Of the 30 ports investigated in this study, 11 contained molluscs infected with A. cantonensis larvae. The set of infected species consisted of S. octona, S. marginata, A. fulica and B. similaris. A total of 36.6% of the investigated ports were positive for A. cantonensis, indicating a wide distribution of this worm. It remains uncertain when and how A. cantonensis was introduced into South America.
Resumo:
Background: Campylobacter jejuni is responsible for human foodborne enteritis. This bacterium is a remarkable colonizer of the chicken gut, with some strains outcompeting others for colonization. To better understand this phenomenon, the objective of this study was to extensively characterize the phenotypic performance of C. jejuni chicken strains and associate their gut colonizing ability with specific genes. Results: C. jejuni isolates (n = 45) previously analyzed for the presence of chicken colonization associated genes were further characterized for phenotypic properties influencing colonization: autoagglutination and chemotaxis as well as adhesion to and invasion of primary chicken caecal cells. This allowed strains to be ranked according to their in vitro performance. After their in vitro capacity to outcompete was demonstrated in vivo, strains were then typed by comparative genomic fingerprinting (CGF). In vitro phenotypical properties displayed a linear variability among the tested strains. Strains possessing higher scores for phenotypical properties were able to outcompete others during chicken colonization trials. When the gene content of strains was compared, some were associated with different phenotypical scores and thus with different outcompeting capacities. Use of CGF profiles showed an extensive genetic variability among the studied strains and suggested that the outcompeting capacity is not predictable by CGF profile. Conclusion: This study revealed a wide array of phenotypes present in C. jejuni strains, even though they were all recovered from chicken caecum. Each strain was classified according to its in vitro competitive potential and its capacity to compete for chicken gut colonization was associated with specific genes. This study also exposed the disparity existing between genetic typing and phenotypical behavior of C. jejuni strains.
Resumo:
Clostridium perfringens type C causes fatal necrotizing enteritis in different mammalian hosts, most commonly in newborn piglets. Human cases are rare, but the disease, also called pigbel, was endemic in the Highlands of Papua New Guinea. Lesions in piglets and humans are very similar and characterized by segmental necro-hemorrhagic enteritis in acute cases and fibrino-necrotizing enteritis in subacute cases. Histologically, deep mucosal necrosis accompanied by vascular thrombosis and necrosis was consistently reported in naturally affected pigs and humans. This suggests common pathogenetic mechanisms. Previous in vitro studies using primary porcine aortic endothelial cells suggested that beta-toxin (CPB) induced endothelial damage contributes to the pathogenesis of C. perfringens type C enteritis in pigs. In the present study we investigated toxic effects of CPB on cultured primary human macro- and microvascular endothelial cells. In vitro, these cells were highly sensitive to CPB and reacted with similar cytopathic and cytotoxic effects as porcine endothelial cells. Our results indicate that porcine and human cell culture based in vitro models represent valuable tools to investigate the pathogenesis of this bacterial disease in animals and humans.
Resumo:
Clostridium perfringens type C-induced enteritis necroticans is a rare but often fatal disease in humans. A consistent histopathological finding is an acute, deep necrosis of the small intestinal mucosa associated with acute vascular necrosis and massive haemorrhage in the lamina propria and submucosa. Retrospective immunohistochemical investigations of tissues from a diabetic adult who died of enteritis necroticans revealed endothelial localization of C. perfringens beta-toxin in small intestinal lesions. Our results indicate that vascular necrosis might be induced by a direct interaction between C. perfringens beta-toxin and endothelial cells and that targeted disruption of endothelial cells plays a role in the pathogenesis of enteritis necroticans.
Resumo:
Staphylococcus aureus aggravates the allergic eosinophilic inflammation. We hypothesized that Staphylococcus aureus-derived enterotoxins directly affect eosinophil functions. Therefore, this study investigated the effects of Staphylococcal enterotoxins A and B (SEA and SEB) on human and mice eosinophil chemotaxis and adhesion in vitro, focusing on p38 MAPK phosphorylation and intracellular Ca(2+) mobilization. Eosinophil chemotaxis was evaluated using a microchemotaxis chamber, whereas adhesion was performed in VCAM-1 and ICAM-1-coated plates. Measurement of p38 MAPK phosphorylation and intracellular Ca(2+) levels were monitored by flow cytometry and fluorogenic calcium-binding dye, respectively. Prior incubation (30 to 240 min) of human blood eosinophils with SEA (0.5 to 3 ng/ml) significantly reduced eotaxin-, PAF- and RANTES-induced chemotaxis (P<0.05). Likewise, SEB (1 ng/ml, 30 min) significantly reduced eotaxin-induced human eosinophil chemotaxis (P<0.05). The reduction of eotaxin-induced human eosinophil chemotaxis by SEA and SEB was prevented by anti-MHC monoclonal antibody (1 μg/ml). In addition, SEA and SEB nearly suppressed the eotaxin-induced human eosinophil adhesion in ICAM-1- and VCAM-1-coated plates. SEA and SEB prevented the increases of p38 MAPK phosphorylation and Ca(2+) levels in eotaxin-activated human eosinophils. In separate protocols, we evaluated the effects of SEA on chemotaxis and adhesion of eosinophils obtained from mice bone marrow. SEA (10 ng/ml) significantly reduced the eotaxin-induced chemotaxis along with cell adhesion to both ICAM-1 and VCAM-1-coated plates (P<0.05). In conclusion, the inhibition by SEA and SEB of eosinophil functions (chemotaxis and adhesion) are associated with reductions of p38 MAPK phosphorylation and intracellular Ca(2+) mobilization.
Resumo:
The Indirect Fluorescence Assay (IFA) and the indirect ELISA were comparatively used to detect IgG and IgM antibodies for Toxoplasma gondii in experimentally and naturally infected primates. In the experimentally infected group, antibodies of diagnostic value were detected at day 9 post-infection (PI) with the IFA (IgG and IgM) and with IgG-ELISA. IgM-ELISA detected antibodies for T. gondii starting at day 3 PI until the end of the experiment (102 days PI). Of the 209 naturally infected sera tested, from many zoos of State of Sao Paulo, 64.59 and 67.94% were positive in the IgG-IFA test and IgG-ELISA respectively. IgM-ELISA test detected seropositivity in 52.63% of the sera although IgM-IFA test detected it in only in 0.96% of the samples. The differential toxoplasmosis diagnosis was accomplished with Neospora caninum by IFA, observing 61 (29.2%) seropositive animals for this parasite and 149 (70.8%) negative. Sixty animals were positive for both T. gondii and N. caninum. Pneumonia, splenomegaly, and intestinal ulcers were macroscopically observed. Unremarkable interstitial pneumonia, enteritis, colitis, splenitis, and glomerulitis were microscopically observed. The immunohistochemical stain could not detect the presence of T. gondii in the tissues of the animals infected experimentally.
Resumo:
A proven case of human infection caused by Angiostrongylus costaricensis is reported for the first time in Venezuela. The patient was a 57-year-old female surgically operated because of signs of peritonitis with a palpable mass at the lower right quadrant of the abdomen. WBC count reported 16,600 cells/mm³, with 46% eosinophils. The tumoral aspect of ileocolic area and peritoneal lymph nodes prompted the resection of a large area of the terminal ileum, cecum, part of the ascending colon and a small part of the jejunum, where a small lesion was found. The pathology showed thickened areas of the intestinal wall with areas of hemorrhage and a perforation of the cecum. Histology showed intense eosinophil infiltration of the whole intestinal wall, granulomas with giant cells and eosinophils. Some of the granuloma surrounded round or oval eggs with content characterized by a large empty area, cells or embryo in the center, and sometimes nematode larvae. A cross section of an adult nematode worm was observed inside a branch of mesenteric artery. The intestinal affected area, the characteristics of the lesions, the presence of eggs in the submucosa with nematode larvae inside, and the observation of a nematode inside a mesenteric artery, makes sufficient criteria for the diagnosis of an infection by Angiostrongylus costaricensis.
Resumo:
Eosinophilic esophagitis (EoE) is a clinicopathologic condition of increasing recognition and prevalence. In 2007, a consensus recommendation provided clinical and histopathologic guidance for the diagnosis and treatment of EoE; however, only a minority of physicians use the 2007 guidelines, which require fulfillment of both histologic and clinical features. Since 2007, the number of EoE publications has doubled, providing new disease insight. Accordingly, a panel of 33 physicians with expertise in pediatric and adult allergy/immunology, gastroenterology, and pathology conducted a systematic review of the EoE literature (since September 2006) using electronic databases. Based on the literature review and expertise of the panel, information and recommendations were provided in each of the following areas of EoE: diagnostics, genetics, allergy testing, therapeutics, and disease complications. Because accumulating animal and human data have provided evidence that EoE appears to be an antigen-driven immunologic process that involves multiple pathogenic pathways, a new conceptual definition is proposed highlighting that EoE represents a chronic, immune/antigen-mediated disease characterized clinically by symptoms related to esophageal dysfunction and histologically by eosinophil-predominant inflammation. The diagnostic guidelines continue to define EoE as an isolated chronic disorder of the esophagus diagnosed by the need of both clinical and pathologic features. Patients commonly have high rates of concurrent allergic diatheses, especially food sensitization, compared with the general population. Proved therapeutic options include chronic dietary elimination, topical corticosteroids, and esophageal dilation. Important additions since 2007 include genetic underpinnings that implicate EoE susceptibility caused by polymorphisms in the thymic stromal lymphopoietin protein gene and the description of a new potential disease phenotype, proton pump inhibitor-responsive esophageal eosinophila. Further advances and controversies regarding diagnostic methods, surrogate disease markers, allergy testing, and treatment approaches are discussed.
Resumo:
Allergen-induced bone marrow responses are observable in human allergic asthmatics, involving specific increases in eosinophil-basophil progenitors (Eo/B-CFU), measured either by hemopoietic assays or by flow cytometric analyses of CD34-positive, IL-3Ralpha-positive, and/or IL-5-responsive cell populations. The results are consistent with the upregulation of an IL-5-sensitive population of progenitors in allergen-induced late phase asthmatic responses. Studies in vitro on the phenotype of developing eosinophils and basophils suggest that the early acquisition of IL-5Ralpha, as well as the capacity to produce cytokines such as GM-CSF and IL-5, are features of the differentiation process. These observations are consistent with findings in animal models, indicating that allergen-induced increases in bone marrow progenitor formation depend on hemopoietic factor(s) released post-allergen. The possibility that there is constitutive marrow upregulation of eosinophilopoiesis in allergic airways disease is also an area for future investigation.
Resumo:
We summarize here the main characteristics of a novel model of pulmonary hypersensitivity. Mice were immunized with a subcutaneous implant of a fragment of heat solidified chicken egg white and 14 days later challenged with ovalbumin given either by aerosol or by intratracheal instillation. This procedure induces a persistent eosinophilic lung inflammation, a marked bone marrow eosinophilia, and Th2-type isotypic profile with histopathological findings that resemble human asthma. Further, this model is simple to perform, reproducible in different strains of mice, does not require adjuvants nor multiple boosters. Based on these characteristics we propose it as a suitable murine model of allergic eosinophilic lung inflammation.
Resumo:
Eosinophilic meningitis (EoM) is an acute disease that affects the central nervous system. It is primarily caused by infection with the nematode Angiostrongylus cantonensis. This infection was previously restricted to certain Asian countries and the Pacific Islands, but it was first reported in Brazil in 2007. Since then, intermediate and definitive hosts infected with A. cantonensis have been identified within the urban areas of many states in Brazil, including those in the northern, northeastern, southeastern and southern regions. The goals of this review are to draw the attention of the medical community and health centres to the emergence of EoM in Brazil, to compile information about several aspects of the human infection and mode of transmission and to provide a short protocol of procedures for the diagnosis of this disease.