983 resultados para Huckel Molecular Orbital Butadiene Maple
Resumo:
The Huckel Molecular Orbtial method is used to treat the MO's of butadiene. The method employs analytical tools and Maple.
Resumo:
EHT calculations on heterotrinuclear cobalt(III) complexes of the type [Cu{(OH)(2)Co(L(4))}(2)](4+) where L(4) denotes (en)(2) or (NH3)(4), en = ethylenediamine and their component species have been carried out. The results regarding bonding and structure for the trinuclear complexes are compared with those for the monomer components such as [Co(en)(2)(OH)(2)](+), [Co(NH3)(4)(OH)(2)](+) and [Cu(OH)(4)](2-) are discussed.
Resumo:
The pi and pi-star orbitals of the hydrogen molecular cation are obtained using Maple in the same manner as the sigma and sigma-star orbitals were obtained in paper-36.
Resumo:
We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.
Resumo:
UVPES studies and ab initio and DFT computations have been done on the benzene...ICl complex; electron spectral data and computed orbital energies show that donor orbitals are stabilized and acceptor orbitals are destabilized due to complexation. Calculations predict an oblique structure for the complex in which the interacting site is a C=C bond center in the donor and iodine atom in the acceptor, in full agreement with earlier experimental reports. BSSE-corrected binding energies closely match the enthalpy of complexation reported, and the NBO analysis clearly reveals the involvement of the pi orbital of benzene and the sigma* orbital of ICl in the complex.
Resumo:
Conformational preferences of thiocarbonohydrazide (H2NNHCSNHNH2) in its basic and N,N′-diprotonated forms are examined by calculating the barrier to internal rotation around the C---N bonds, using the theoretical LCAO—MO (ab initio and semiempirical CNDO and EHT) methods. The calculated and experimental results are compared with each other and also with values for N,N′-dimethylthiourea which is isoelectronic with thiocarbonohydrazide. The suitability of these methods for studying rotational isomerism seems suspect when lone pair interactions are present.
Resumo:
The infrared spectra of monothiodiacetamide (MTDA, CHaCONHCSCH3) and its N-deuterated compound in solution, solid state and at low temperature are measured. Normal coordinate analysis for the planar vibrations of MTDAd o and -dl have been performed for the two most probable cis-trans-CONHCSor -CSNHCO-conformers using a simple Urey-Bradley force function. The conformation of MTDA derived from the vibrational spectra is supported by the all valence CNDO/2 molecular orbital method. The vibrational assignments and the electronic structure of MTDA are also given.
Resumo:
The variable temperature proton and ambient temperature carbon-13 NMR spectra of S-methyl dithiocarbamate esters have been recorded. The results of the theoretical energy calculations (CNDO/2 and EHT types) together with the experimental data have been interpreted in terms of the molecular conformations. The barrier heights for the rotation about the thioamide C—N bond are calculated using the CNDO/2 method and the results are discussed in terms of the computed charge densities and bond orders.
Resumo:
The electronic structures of a series of 4-substituted pyridine N-oxides and 4-nitroquinoline N-oxide are investigated using the simple Pariser-Parr-Pople (PPP), a modified PPP, IEH and MINDO/2 methods. The electronic absorption band maxima and dipole moments are calculated and compared with experimental values. The photoelectron spectra of these compounds are assigned. The nature of the N-oxide group is characterized using the orbital population distributions. The antifungal activity exhibited by some of these compounds is discussed in terms of the nucleophilic frontier electron densities, superdelocalizabilities and electron acceptor properties. The effect of the electron releasing as well as the electron withdrawing substituents on the physico-chemical properties is explained.
Resumo:
Ab initio RHF/4-31G level molecular orbital calculations have been carried out on dimethoxymethane as a model compound for the acetal moiety in methyl pyranosides. The calculations are consistent with the predictions of the anomeric effect and the exo-anomeric effect. They reproduce very successfully the differences in molecular geometry observed by x-ray and neutron diffraction of single crystals of the methyl cy-D- and methyl 0-D-pyranosides. Calculations carried out at the 6-3 1G* level for methanediol confirm the earlier calculations at the 4-31G level, with smaller energy differences between the four staggered conformations.
Resumo:
X-ray LIII-absorption edges of platinum in nine octahedral complexes have been recorded using a bent crystal spectrograph. The edge features of the discontinuities have been interpreted with the help of qualitative molecular orbital diagrams. A correlation between the energy separation of the first two absorption maxima and the spectrochemical series of the ligands has been arrived at.
Resumo:
HeI photoelectron spectra of 1:1 electron donor-acceptor complexes are discussed in the light of molecular orbital calculations. The complexes discussed include those formed by BH3, BF3 and SO2. Some systematics have been found in the ionization energy shifts of the complexes compared to the free components and these are related to the strength of the donor-acceptor bond. Hel spectra of hydrogen bonded complexes are discussed in comparison with results from MO calculations. Limitations of such studies as well as scope for further investigations are indicated.
Resumo:
C---H…X hydrogen bonded systems are studied by the STO-3G method. The proton donor ability of carbon is analysed in terms of its hybridization states and the substituents.
Resumo:
Electronic structures of nicotinic, isonicotinic and 2-picolinic acids and their amides have been investigated, using the variable-? Pariser-Parr-Pople (PPP), iterative extended Hückel and MINDO/2 methods. In addition, PPP and MINDO/2 treatments have also been applied to 3-acetylpyridine and protonated nicotinamide. Based on these calculations, dipole moments, electronic transitions, chemical and biological activity are discussed. Comparison is made with experimental results where available.