990 resultados para Hox gene
Resumo:
Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx), whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period.
Resumo:
The ability to use a vital cell marker to study mouse embryogenesis will open new avenues of experimental research. Recently, the use of transgenic mice, containing multiple copies of the jellyfish gene encoding the green fluorescent protein (GFP), has begun to realize this potential. Here, we show that the fluorescent signals produced by single-copy, targeted GFP in-frame fusions with two different murine Hox genes, Hoxa1 and Hoxc13, are readily detectable by using confocal microscopy. Since Hoxa1 is expressed early and Hoxc13 is expressed late in mouse embryogenesis, this study shows that single-copy GFP gene fusions can be used through most of mouse embryogenesis. Previously, targeted lacZ gene fusions have been very useful for analyzing mouse mutants. Use of GFP gene fusions extends the benefits of targeted lacZ gene fusions by providing the additional utility of a vital marker. Our analysis of the Hoxc13GFPneo embryos reveals GFP expression in each of the sites expected from analysis of Hoxc13lacZneo embryos. Similarly, Hoxa1GFPneo expression was detected in all of the sites predicted from RNA in situ analysis. GFP expression in the foregut pocket of Hoxa1GFPneo embryos suggests a role for Hoxa1 in foregut-mediated differentiation of the cardiogenic mesoderm.
Resumo:
Hox complex genes control spatial patterning mechanisms in the development of arthropod and vertebrate body plans. Hox genes are all expressed during embryogenesis in these groups, which are all directly developing organisms in that embryogenesis leads at once to formation of major elements of the respective adult body plans. In the maximally indirect development of a large variety of invertebrates, the process of embryogenesis leads only to a free-living, bilaterally organized feeding larva. Maximal indirect development is exemplified in sea urchins. The 5-fold radially symmetric adult body plan of the sea urchin is generated long after embryogenesis is complete, by a separate process occurring within imaginal tissues set aside in the larva. The single Hox gene complex of Strongylocentrotus purpuratus contains 10 genes, and expression of eight of these genes was measured by quantitative methods during both embryonic and larval developmental stages and also in adult tissues. Only two of these genes are used significantly during the entire process of embryogenesis per se, although all are copiously expressed during the stages when the adult body plan is forming in the imaginal rudiment. They are also all expressed in various combinations in adult tissues. Thus, development of a microscopic, free-living organism of bilaterian grade, the larva, does not appear to require expression of the Hox gene cluster as such, whereas development of the adult body plan does. These observations reflect on mechanisms by which bilaterian metazoans might have arisen in Precambrian evolution.
Resumo:
The conserved organization of the Hox genes throughout the animal kingdom has become one of the major paradigms of evolutionary developmental biology. We have examined the organization of the Hox genes of the grasshopper, Schistocerca gregaria. We find that the grasshopper Hox cluster is over 700 kb long, and is not split into equivalents of the Antennapedia complex and the bithorax complex of Drosophila melanogaster. SgDax and probably also Sgzen, the grasshopper homologues of fushi-tarazu (ftz) and Zerknüllt (zen), respectively, are also in the cluster, showing that the non-homeotic Antp-class genes, “accessory genes,” are an ancient feature of insect Hox clusters.
Resumo:
We report the isolation and expression of the Hox gene, Cnox-2, in Hydractinia symbiolongicarpus, a hydrozoan displaying division of labor. We found different patterns of aboral-to-oral Cnox-2 expression among polyp polymorphs, and we show that experimental conversion of one polyp type to another is accompanied by concordant alteration in Cnox-2 expression. Our results are consistent with the suggestion that polyp polymorphism, characteristic of hydractiniid hydroids, arose via evolutionary modification of proportioning of head to body column.
Resumo:
Transient segmentation in the hindbrain is a fundamental morphogenetic phenomenon in the vertebrate embryo, and the restricted expression of subsets of Hox genes in the developing rhombomeric units and their derivatives is linked with regional specification. Here we show that patterning of the vertebrate hindbrain involves the direct upregulation of the chicken and pufferfish group 2 paralogous genes, Hoxb-2 and Hoxa-2, in rhombomeres 3 and 5 (r3 and r5) by the zinc finger gene Krox-20. We identified evolutionarily conserved r3/r5 enhancers that contain high affinity Krox-20. binding sites capable of mediating transactivation by Krox-20. In addition to conservation of binding sites critical for Krox-20 activity in the chicken Hoxa-2 and pufferfish Hoxb-2 genes, the r3/r5 enhancers are also characterized by the presence of a number of identical motifs likely to be involved in cooperative interactions with Krox-20 during the process of hindbrain patterning in vertebrates.
Resumo:
To investigate the functions of paralogous Hox genes, we compared the phenotypic consequences of altering the embryonic patterns of expression of Hoxb-8 and Hoxc-8 in transgenic mice. A comparison of the phenotypic consequences of altered expression of the two paralogs in the axial skeletons of newborns revealed an array of common transformations as well as morphological changes unique to each gene. Divergence of function of the two paralogs was clearly evident in costal derivatives, where increased expression of the two genes affected opposite ends of the ribs. Many of the morphological consequences of expanding the mesodermal domain and magnitude of expression of either gene were atavistic, inducing the transformation of axial skeletal structures from a modern to an earlier evolutionary form. We propose that regional specialization of the vertebral column has been driven by regionalization of Hox gene function and that a major aspect of this evolutionary progression may have been restriction of Hox gene expression.
Resumo:
Hox genes encode a family of transcriptional regulators that elicit distinct developmental programmes along the head-to-tail axis of animals. The specific regional functions of individual Hox genes largely reflect their restricted expression patterns, the disruption of which can lead to developmental defects and disease. Here, we examine the spectrum of molecular mechanisms controlling Hox gene expression in model vertebrates and invertebrates and find that a diverse range of mechanisms, including nuclear dynamics, RNA processing, microRNA and translational regulation, all concur to control Hox gene outputs. We propose that this complex multi-tiered regulation might contribute to the robustness of Hox expression during development.
Resumo:
It has long been known that Hox genes are central players in patterning the vertebrate axial skeleton. Extensive genetic studies in the mouse have revealed that the combinatorial activity of Hox genes along the anterior-posterior body axis specifies different vertebral identities. In addition, Hox genes were instrumental for the evolutionary diversification of the vertebrate body plan. In this review, we focus on fundamental questions regarding the intricate mechanisms controlling Hox gene activity. In particular, we discuss the functional relevance of the precise timing of Hox gene activation in the embryo. Moreover, we provide insight into the epigenetic regulatory mechanisms that are likely to control this process and are responsible for the maintenance of spatially restricted Hox expression domains throughout embryonic development. We also analyze how specific features of each Hox protein may contribute to the functional diversity of Hox family. Altogether, the work reviewed here further supports the notion that the Hox program is far more complex than initially assumed. Exciting new findings will surely emerge in the years ahead.
Resumo:
Dissertação apresentada para obtenção do grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa
Resumo:
BACKGROUND: The evolutionary lineage leading to the teleost fish underwent a whole genome duplication termed FSGD or 3R in addition to two prior genome duplications that took place earlier during vertebrate evolution (termed 1R and 2R). Resulting from the FSGD, additional copies of genes are present in fish, compared to tetrapods whose lineage did not experience the 3R genome duplication. Interestingly, we find that ParaHox genes do not differ in number in extant teleost fishes despite their additional genome duplication from the genomic situation in mammals, but they are distributed over twice as many paralogous regions in fish genomes. RESULTS: We determined the DNA sequence of the entire ParaHox C1 paralogon in the East African cichlid fish Astatotilapia burtoni, and compared it to orthologous regions in other vertebrate genomes as well as to the paralogous vertebrate ParaHox D paralogons. Evolutionary relationships among genes from these four chromosomal regions were studied with several phylogenetic algorithms. We provide evidence that the genes of the ParaHox C paralogous cluster are duplicated in teleosts, just as it had been shown previously for the D paralogon genes. Overall, however, synteny and cluster integrity seems to be less conserved in ParaHox gene clusters than in Hox gene clusters. Comparative analyses of non-coding sequences uncovered conserved, possibly co-regulatory elements, which are likely to contain promoter motives of the genes belonging to the ParaHox paralogons. CONCLUSION: There seems to be strong stabilizing selection for gene order as well as gene orientation in the ParaHox C paralogon, since with a few exceptions, only the lengths of the introns and intergenic regions differ between the distantly related species examined. The high degree of evolutionary conservation of this gene cluster's architecture in particular - but possibly clusters of genes more generally - might be linked to the presence of promoter, enhancer or inhibitor motifs that serve to regulate more than just one gene. Therefore, deletions, inversions or relocations of individual genes could destroy the regulation of the clustered genes in this region. The existence of such a regulation network might explain the evolutionary conservation of gene order and orientation over the course of hundreds of millions of years of vertebrate evolution. Another possible explanation for the highly conserved gene order might be the existence of a regulator not located immediately next to its corresponding gene but further away since a relocation or inversion would possibly interrupt this interaction. Different ParaHox clusters were found to have experienced differential gene loss in teleosts. Yet the complete set of these homeobox genes was maintained, albeit distributed over almost twice the number of chromosomes. Selection due to dosage effects and/or stoichiometric disturbance might act more strongly to maintain a modal number of homeobox genes (and possibly transcription factors more generally) per genome, yet permit the accumulation of other (non regulatory) genes associated with these homeobox gene clusters.
Resumo:
ABSTRACT Poor outcome for glioblastoma patients is largely due to resistance to chemoradiation therapy. While epigenetic inactivation of MGMT mediated DNA repair is highly predictive for benefit from the alkylating agent therapy Temozolomide, additional mechanisms for resistance associated with molecular alterations exist. Furthermore, new concepts in cancer suggest that resistance to treatment may be linked to cancer stem cells that escape therapy and act as source for tumour recurrence. We determined gene expression signatures associated with outcome in glioblastoma patients enrolled in a phase II and phase III clinical trial establishing the new combination therapy of radiation plus concomitant and adjuvant Temozolomide. Correlating stable gene clusters emerging from unsupervised analysis with survival of 42 treated patients identified a number of biological processes associated with outcome. Most prominent, a gene cluster dominated by HOX genes and comprising PROM1, was associated with resistance. PROM1 encodes CD133, a marker for a subpopulation of tumour cells enriched for glioblastoma stem- like cells. The core of this correlated HOX cluster was comprised in the top genes of a "self-renewal signature" defined in a mouse model for MLL-AF9 initiated leukaemia. The association of the HOX gene cluster with tumour resistance was confirmed in two external data sets of 146 malignant glioma As additional resistance factors we identified over-expression of the epidermal growth factor receptor gene, EGFR, while increased gene expression related to biological features of tumour host interaction, including markers for tumour vascular and cell adhesion, and innate immune response, were associated with better outcome. The "self-renewal" signature associated with resistance to the new combination chemoradiation therapy provides first clinical evidence that glioma stem like cells may implicated in resistance in a uniformly treated cohort of glioblastoma patients. This study underlines the need to target the tumour stem cell compartment, and provides some testable hypothesis for biological mechanisms relevant for malignant behaviour of glioblastoma that may be targeted in new treatment approaches. Résumé Le glioblastome, tumeur cérébrale primaire maligne la plus fréquente, est connue pour son mauvais pronostique. Des avancées chimiothérapeutiques récentes avec des agents alkylants comme le témozolomide (TMZ), ont permis une amélioration notable dans la survie de certains patients. Les bénéficiaires ont la caractéristique commune de présenter une particularité génétique, la methylation du MGMT (methylguanine methyltransferase). Néanmoins, d'autres mécanismes de résistance en fonction des aberrations moléculaires existent. Nous avons établi les profils d'expressions génétiques des patients traités par irradiation et TMZ dans des études cliniques de phase II et III. En combinant des méthodes non-supervisées et supervisées, de l'étude de la cohorte des patients traités nous avons découvert des groupes de gènes associés à la survie. Un ensemble de gènes contenant les gènes Hox semble lié au mécanisme de résistance au traitement. Récemment, les gènes Hox ont été décrits comme faisant partie d"une signature d'autorenouvellement (self-renewal) des cellules souches cancéreuses de la leucémie. L'autorenouvellement est un processus grâce auquel les cellules souches se maintiennent tout au long de la vie. Cette association à la résistance est confirmée dans deux autres études indépendantes. Un autre facteur de résistance au traitement est la surexpression du gène EGFR. D'autre part, deux groupes de gènes associés à la relation entre hôte-tumeur tels que les marqueurs des vaisseaux tumoraux et de la réponse immunitaire innée s'avèrent avoir un effet positif sur la survie des patients traités. La découverte de la signature d'autorenouvellement comme facteur de résistance à la nouvelle chimio-radiothérapie offre une preuve clinique que les cellules souches cancéreuses sont impliquées dans la résistance au traitement. If est donc logique de penser que le traitement ciblé contre des cellules souches cancéreuses va dans l'avenir permettre des thérapies anticancéreuses plus performantes.
Resumo:
BACKGROUND: HOX genes are a family of developmental genes that are expressed neither in the developing forebrain nor in the normal brain. Aberrant expression of a HOX-gene dominated stem-cell signature in glioblastoma has been linked with increased resistance to chemo-radiotherapy and sustained proliferation of glioma initiating cells. Here we describe the epigenetic and genetic alterations and their interactions associated with the expression of this signature in glioblastoma. RESULTS: We observe prominent hypermethylation of the HOXA locus 7p15.2 in glioblastoma in contrast to non-tumoral brain. Hypermethylation is associated with a gain of chromosome 7, a hallmark of glioblastoma, and may compensate for tumor-driven enhanced gene dosage as a rescue mechanism by preventing undue gene expression. We identify the CpG island of the HOXA10 alternative promoter that appears to escape hypermethylation in the HOX-high glioblastoma. An additive effect of gene copy gain at 7p15.2 and DNA methylation at key regulatory CpGs in HOXA10 is significantly associated with HOX-signature expression. Additionally, we show concordance between methylation status and presence of active or inactive chromatin marks in glioblastoma-derived spheres that are HOX-high or HOX-low, respectively. CONCLUSIONS: Based on these findings, we propose co-evolution and interaction between gene copy gain, associated with a gain of chromosome 7, and additional epigenetic alterations as key mechanisms triggering a coordinated, but inappropriate, HOX transcriptional program in glioblastoma.
Resumo:
Background In most eumetazoans studied so far, Hox genes determine the identity of structures along the main body axis. They are usually linked in genomic clusters and, in the case of the vertebrate embryo, are expressed with spatial and temporal colinearity. Outside vertebrates, temporal colinearity has been reported in the cephalochordate amphioxus (the least derived living relative of the chordate ancestor) but only for anterior and central genes, namely Hox1 to Hox4 and Hox6. However, most of the Hox gene expression patterns in amphioxus have not been reported. To gain global insights into the evolution of Hox clusters in chordates, we investigated a more extended expression profile of amphioxus Hox genes. Results Here we report an extended expression profile of the European amphioxus Branchiostoma lanceolatum Hox genes and describe that all Hox genes, except Hox13, are expressed during development. Interestingly, we report the breaking of both spatial and temporal colinearity for at least Hox6 and Hox14, which thus have escaped from the classical Hox code concept. We show a previously unidentified Hox6 expression pattern and a faint expression for posterior Hox genes in structures such as the posterior mesoderm, notochord, and hindgut. Unexpectedly, we found that amphioxus Hox14 had the most divergent expression pattern. This gene is expressed in the anterior cerebral vesicle and pharyngeal endoderm. Amphioxus Hox14 expression represents the first report of Hox gene expression in the most anterior part of the central nervous system. Nevertheless, despite these divergent expression patterns, amphioxus Hox6 and Hox14 seem to be still regulated by retinoic acid. Conclusions Escape from colinearity by Hox genes is not unusual in either vertebrates or amphioxus and we suggest that those genes escaping from it are probably associated with the patterning of lineage-specific morphological traits, requiring the loss of those developmental constraints that kept them colinear.