991 resultados para Host-parasitoid Systems
Resumo:
Investigations were carried out on the host parasitoid interaction between Periplaneta americana, the American cockroach and Tetrastichus hagenowii, an oothecal parasitoid. This gregarious female parasitoid infected and or oviposited in only one host and caused 100 por cento mortality of the infected host. However, increase in parasitoid density decreased the progeny production and influenced the sex ratio. The progenies produced were male biased. When host preference was tested by offering oothecae of different species of cockroaches, T. hagenowii showed a predilection towards the oothecae of P. americana, suggestings its host specificity.
Resumo:
Recent work has shown that the evolution of Drosophila melanogaster resistance to attack by the parasitoid Asobara tabida is constrained by a trade-off with larval competitive ability. However, there are two very important questions that need to be answered. First, is this a general cost, or is it parasitoid specific? Second, does a selected increase in immune response against one parasitoid species result in a correlated change in resistance to other parasitoid species? The answers to both questions will influence the coevolutionary dynamics of these species, and also may have a previously unconsidered, yet important, influence on community structure.
Resumo:
The interplay between coevolutionary and population or community dynamics is currently the focus of much empirical and theoretical consideration. Here, we develop a simulation model to study the coevolutionary and population dynamics of a hypothetical host-parasitoid interaction. In the model, host resistance and parasitoid virulence are allowed to coevolve. We investigate how trade-offs associated with these traits modify the system's coevolutionary and population dynamics. The most important influence on these dynamics comes from the incorporation of density-dependent costs of resistance ability. We find three main outcomes. First, if the costs of resistance are high, then one or both of the players go extinct. Second, when the costs of resistance are intermediate to low, cycling population and coevolutionary dynamics are found, with slower evolutionary changes observed when the costs of virulence are also low. Third, when the costs associated with resistance and virulence are both high, the hosts trade-off resistance against fecundity and invest little in resistance. However, the parasitoids continue to invest in virulence, leading to stable host and parasitoid population sizes. These results support the hypothesis that costs associated with resistance and virulence will maintain the heritable variation in these traits found in natural populations and that the nature of these trade-offs will greatly influence the population dynamics of the interacting species.
Resumo:
Parasitic wasps attack a number of insect species on which they feed, either externally or internally. This requires very effective strategies for suppressing the immune response and a finely tuned interference with the host physiology that is co-opted for the developing parasitoid progeny. The wealth of physiological host alterations is mediated by virulence factors encoded by the wasp or, in some cases, by polydnaviruses (PDVs), unique viral symbionts injected into the host at oviposition along with the egg, venom and ovarian secretions. PDVs are among the most powerful immunosuppressors in nature, targeting insect defense barriers at different levels. During my PhD research program I have used Drosophila melanogaster as a model to expand the functional analysis of virulence factors encoded by PDV focusing on the molecular processes underlying the disruption of the host endocrine system. I focused my research on a member of the ankyrin (ank) gene family, an immunosuppressant found in bracovirus, which associates with the parasitic wasp Toxoneuron nigriceps. I found that ankyrin disrupts ecdysone biosynthesis by impairing the vesicular traffic of ecdysteroid precursors in the cells of the prothoracic gland and results in developmental arrest.
Resumo:
The investigation of pathogen persistence in vector-borne diseases is important in different ecological and epidemiological contexts. In this thesis, I have developed deterministic and stochastic models to help investigating the pathogen persistence in host-vector systems by using efficient modelling paradigms. A general introduction with aims and objectives of the studies conducted in the thesis are provided in Chapter 1. The mathematical treatment of models used in the thesis is provided in Chapter 2 where the models are found locally asymptotically stable. The models used in the rest of the thesis are based on either the same or similar mathematical structure studied in this chapter. After that, there are three different experiments that are conducted in this thesis to study the pathogen persistence. In Chapter 3, I characterize pathogen persistence in terms of the Critical Community Size (CCS) and find its relationship with the model parameters. In this study, the stochastic versions of two epidemiologically different host-vector models are used for estimating CCS. I note that the model parameters and their algebraic combination, in addition to the seroprevalence level of the host population, can be used to quantify CCS. The study undertaken in Chapter 4 is used to estimate pathogen persistence using both deterministic and stochastic versions of a model with seasonal birth rate of the vectors. Through stochastic simulations we investigate the pattern of epidemics after the introduction of an infectious individual at different times of the year. The results show that the disease dynamics are altered by the seasonal variation. The higher levels of pre-existing seroprevalence reduces the probability of invasion of dengue. In Chapter 5, I considered two alternate ways to represent the dynamics of a host-vector model. Both of the approximate models are investigated for the parameter regions where the approximation fails to hold. Moreover, three metrics are used to compare them with the Full model. In addition to the computational benefits, these approximations are used to investigate to what degree the inclusion of the vector population in the dynamics of the system is important. Finally, in Chapter 6, I present the summary of studies undertaken and possible extensions for the future work.
Resumo:
Solid state engineered materials have proven to be useful and suitable tools in the quest of new materials. In this thesis different crystalline compounds were synthesized to provide more sustainable products for different applications, as in cosmetics or in agrochemistry, to propose pollutants removal strategy or to obtain materials for electrocatalysis. Therefore, the research projects presented here can be divided into three main topics: (i) sustainable preparation of solid materials of widely used active ingredients aimed at the reduction of their occurrence in the natural environment. The systems studied in this section are cyclodextrins host-guest compounds, obtained via mechanochemical and slurry synthesis. The first chemicals studied are sunscreens inclusion complexes, that proved to have enhanced photostability and desired photoprotection. The same synthetic methods were applied to obtain inclusion complexes of bentazon, a herbicide often found to leach in groundwaters. The resulting products showed to have desired water solubility properties. The same herbicide was also adsorbed on amorphous calcium phosphate nanoparticles, to obtain a biocompatible formulation of this agrochemical. This herbicide could benefit by the adsorption on nanoparticles for what concerns its kinetic release in different media as well as its photostability. (ii) Sustainable synthesis of co-crystals based on polycyclic aromatic hydrocarbons, for the proposal of a sequestering method with a resulting material with enhanced properties. The co-crystallization via mechanochemical means proved that these pollutants can be sequestered via simple solvent-free synthesis and the obtained materials present better photochemical properties when compared to the starting co-formers. (iii) Crystallization from mild solvents of nanosized materials useful for the application in electrocatalysis. The study of compounds based on nickel and cobalt metal ions resulted in the obtainment of 2D and 1D coordination polymers. Moreover, solid solutions were obtained. These crystals showed layered structures and, according to preliminary results, they can be exfoliated.
Resumo:
The degree and distribution of parasitisation in relation to densities of pink wax scale, Ceroplastes rubens Maskell, on umbrella trees, Schefflera actinophylla (Endl.), in south-eastern Queensland were investigated to determine whether scale outbreaks could be attributed, in part, to low levels of parasitisation. Rates of parasitisation were independent of or inversely dependent on host density, and highly variable, especially at low densities. The absence of density dependent parasitisation may occur as a result of: (i) non-aggregation by parasitoids; (ii) aggregation by parasitoids where parasitisation is limited by intrinsic or extrinsic factors; and/or (iii) high rates of hyperparasitisation.
Resumo:
Multipartite nucleic acid-containing virus-like particles, known as polydnaviruses, are special structures produced by female parasitoid wasps to deliver wasp components into the body of their host at oviposition. The particles confer protection for the developing parasitoid by passive and active means. Although several genes expressed from the circular DNA of these particles have been identified from various host-parasitoid systems, there is not much known about the structural proteins of these particles. Here we report on two genes encoding Cotesia rubecula particle proteins with similarities to molecular chaperones, calreticulin and heat-shock protein 70.
Resumo:
Given the intimate association in host-parasite systems, parasites are expected to initiate their own reproduction when vulnerable hosts become abundant and/or when adult hosts are less resistant. In this study, we examined the variation in the intensities of a blood-sucking mite (Spinturnix myoti, Acarina) with respect to the reproductive cycle and immunocompetence of its host, the greater mouse-eared bat Myotis myotis. Reproductive, pregnant females were less immunocompetent and harboured more parasites than nonreproductive females, whilst, during lactation, immunocompetence was positively associated with female body mass. There was a dramatic increase in the T-cell response of gravid females with the advancement of gestation, which coincided with a diminution of individual parasite loads and a progressive switch of parasites from adults to juveniles. The latter not only harboured greater numbers of mites than adult female bats, but they also exhibited gravid parasites in higher proportions, indicating that juvenile hosts are more attractive for parasite reproduction than adult females.
Resumo:
In parasites, host specificity may result either from restricted dispersal capacity or from fixed coevolutionary host-parasite adaptations. Knowledge of those proximal mechanisms leading to particular host specificity is fundamental to understand host-parasite interactions and potential coevolution of parasites and hosts. The relative importance of these two mechanisms was quantified through infection and cross-infection experiments using mites and bats as a model. Monospecific pools of parasitic mites (Spinturnix myoti and S. andegavinus) were subjected either to individual bats belonging to their traditional, native bat host species, or to another substitute host species within the same bat genus (Myotis). The two parasite species reacted differently to these treatments. S. myoti exhibited a clear preference for, and had a higher fitness on, its native host, Myotis myotis. In contrast, S. andegavinus showed no host choice, although its fitness was higher on its native host M. daubentoni. The causal mechanisms mediating host specificity can apparently differ within closely related host-parasite systems.
Resumo:
Effects of female diet and age on offspring sex ratio of the solitary parasitoid Pachycrepoideus vindemmiae (Rondani) (Hymenoptera, Pteromalidae). Theories predict that females of parasitoid wasps would adjust the offspring sex ratio to environmental conditions in the oviposition patch, but the diet and age of females would also affect the sex ratio adjustment. Our focus was to test the effects of female diet and age on offspring sex ratio of the solitary parasitoid wasp, Pachycrepoideus vindemmiae (Rondani, 1875). Our results showed that females fed with honey had significantly less female biased offspring sex ratio than those fed only with water. Offspring sex ratio (male percentage) decreased with female age or female longevity at the beginning of oviposition but increased at the end. There should be a sperm limitation in P. vindemmiae females at the end of oviposition, and a higher frequency of unfertilized eggs were laid then. Females also laid more unfertilized eggs at the beginning of oviposition, which would be necessary to insure the mating among offspring. Male offspring developed faster and emerged earlier, which would also reduce the risk of virginity in offspring with female-biased sex ratio.
Resumo:
Parasite-mediated sexual selection may arise as a consequence of 1) females avoiding mates with directly transmitted parasites, 2) females choosing less-parasitized males that provide parental care of superior quality, or 3) females choosing males with few parasites in order to obtain genes for parasite resistance in their offspring. Studies of specific host-parasite systems and comparative analyses have revealed both supportive and conflicting evidence for these hypotheses. A meta-analysis of the available evidence revealed a negative relationship between parasite load and the expression of male secondary sexual characters. Experimental studies yielded more strongly negative relationships than observations did, and the relationships were more strongly negative for ectoparasites than for endoparasites. There was no significant difference in the magnitude of the negative effect for species with and without male parental care, or between behavioral and morphological secondary sexual characters. There was a significant difference between studies based on host immune function and those based on parasite loads, with stronger effects for measures of immune function, suggesting that the many negative results from previous analyses of parasite-mediated sexual selection may be explained because relatively benign parasites were studied. The multivariate analyses demonstrating strong effect sizes of immune function in relation to the expression of secondary sexual characters, and for species with male parental care as compared to those without, suggest that parasite resistance may be a general determinant of parasite-mediated sexual selection.