948 resultados para Host-parasite interaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Host-parasite interactions between crustaceans and six fish species (Psectrogaster falcata, Ageneiosus ucayalensis, Acestrorhynchus falcirostris, Hemiodus unimaculatus, Serrasalmus gibbus and Geophagus proximus) from a reservoir in eastern Amazon, northern Brazil, were investigated. Eight hundred and seventy-eight parasites belonging to three crustacean species, Excorallana berbicensis, Argulus chicomendesi and Ergasilus turucuyus, which parasitized the hosts? mouth, gills and tegument, were collected from 295 fish and examined. High infestation levels were caused by E. berbicensis on the body surface of the hosts. Excorallana berbicensis showed aggregate dispersion, except in S. gibbus, while E. turucuyus showed random dispersion in A. falcirostris. The host?s sex did not influence infestation by E. berbicensis, and high parasitism failed to affect the body conditions of the fish. In the case of some hosts, rainfall rates, temperature, dissolved oxygen levels and water pH affected the prevalence and abundance of E. berbicensis, the dominant parasite species. Results revealed that the environment and life-style of the hosts were determining factors in infestations by parasites. Current assay is the first report on E. berbicensis for the six hosts, as well as on A. chicomendesi for G. proximus and P. falcata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proline racemase is an important enzyme of Trypanosoma cruzi and has been shown to be an effective mitogen for B cells, thus contributing to the parasite's immune evasion and persistence in the human host. Recombinant epimastigote parasites overexpressing TcPRAC genes coding for proline racemase present an augmented ability to differentiate into metacyclic infective forms and subsequently penetrate host-cells in vitro. Here we demonstrate that both anti T. cruzi proline racemase antibodies and the specific proline racemase inhibitor pyrrole-2-carboxylic acid significantly affect parasite infection of Vero cells in vitro. This inhibitor also hampers T. cruzi intracellular differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological studies on food webs rarely include parasites, partly due to the complexity and dimensionality of host-parasite interaction networks. Multiple co-occurring parasites can show different feeding strategies and thus lead to complex and cryptic trophic relationships, which are often difficult to disentangle by traditional methods. We analyzed stable isotope ratios of C (13C/12C, δ13C) and N (15N/14N, δ15N) of host and ectoparasite tissues to investigate trophic structure in 4 co-occurring ectoparasites: three lice and one flea species, on two closely related and spatially segregated seabird hosts (Calonectris shearwaters). δ13C isotopic signatures confirmed feathers as the main food resource for the three lice species and blood for the flea species. All ectoparasite species showed a significant enrichment in δ15N relatively to the host tissue consumed (discrimination factors ranged from 2 to 5 depending on the species). Isotopic differences were consistent across multiple host-ectoparasite locations, despite of some geographic variability in baseline isotopic levels. Our findings illustrate the influence of both ectoparasite and host trophic ecology in the isotopic structuring of the Calonectris ectoparasite community. This study highlights the potential of stable isotope analyses in disentangling the nature and complexity of trophic relationships in symbiotic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light microscope studies of the mycoparasite Piptocephalis virginiana revealed that the cylindrical spores of the parasite became spherical upon germination and produced 1-4 germ tubes. Generally t"l.vO germ tubes were produced by each spore. When this parasite was inoculated on its potential hosts, Choanephora cucurbitarum and Phascolomyces articulosus, the germ tube nearest to the host hypha continued to grow and made contact with the host hypha. The tip of the parasite's germ tube became swollen to form a distinct appressorium. Up to this stage the behavior of the parasite was similar regardless of the nature of the host. In the compatible host-parasite combination, the parasite penetrated the host, established a nutritional relationship and continued to grow to cover the host completely with its buff colored spores in 3-4 days. In the incompatible host-parasite combination, the parasite penetrated the host but its further advance was arrested. As a result of failure to establish a nutritional relationship with the resistant host, the parasite made further attempts to penetrate the host at different sites producing multiple infections. In the absence of nutrition the parasite weakened and the host outgrew the parasite completely. In the presence of a non-host species, Linderina pennispora the parasite continued to grow across the non-host 1).yp_hae vlithout establishing an initial contact. Germination studies showed that the parasite germinated equally well in the presence of host and non-host species. Further electron microscope studies revealed that the host-parasite interaction between P. virginiana and its host, C. cucurbi tarum, was compatible when the host hyphae were young slender, with a thin cell wall of one layer. The parasite appeared to penetrate mechanically by pushing the host-cell wall inward. The host plasma membrane invaginated along the involuted cell wall. The older hyphae of C. cucurbitarum possessed two distinct layers of cell wall and-showed an incompatible interaction when challenged vlith the parasite. At the point of contact, the outer layer of the host-cell wall dissolved, probably by enzymatic digestion, and the inner layer became thickened and developed a papilla as a result of its response to the parasite. The haustoria of the parasite in the old hyphae were always surrounded by a thick, well developed sheath, whereas the haustoria of the same age in the young host mycelium were devoid of a sheath during early stages of infection. Instead, they were in direct contact with the host protoplast. The incompatible interaction between a resistant host, P. articulosus and the parasite showed similar results as with the old hyphae of C. cucurbitarum. The cell wall of P. articulosus appeared thick-with two or more layers even in the 18-22 h-old hyphae. No contact or interaction was established between the parasite and the non-host L. pennispora. The role of cell wall in the resistance mechanism is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A viewpoint of host-parasite relationships in paracoccidioidomycosis is presented. The characteristics of the fungus which are important to the host-parasite interaction are discussed. Aspects of inhibition of mycelium-to-yeast transformation by estrogens acting at receptors on the fungal wall and in the cytoplasm, and the role of polysaccharide components of the cell wall in virulence are reviewed. The natural mechanisms of host defense are also examined, including phagocytosis, complement system, natural-killer cells and genetic control of resistance and susceptibility. Finally, a discussion of granuloma morphogenesis and its relationship to the humoral and cellular anti-P. brasiliensis immune response is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas disease, caused by the intracellular protozoan Trypanosoma cruzi, is a serious health problem in Latin America. During this parasitic infection, the heart is one of the major organs affected. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. When cells are infected with T. cruzi, they develop an inflammatory response, in which cyclooxygenase-2 (COX-2) catalyses rate-limiting steps in the arachidonic acid pathway. However, how the parasite interaction modulates COX-2 activity is poorly understood. In this study, the H9c2 cell line was used as our model and we investigated cellular and biochemical aspects during the initial 48 h of parasitic infection. Oscillatory activity of COX-2 was observed, which correlated with the control of the pro-inflammatory environment in infected cells. Interestingly, subcellular trafficking was also verified, correlated with the control of Cox-2 mRNA or the activated COX-2 protein in cells, which is directly connected with the assemble of stress granules structures. Our collective findings suggest that in the very early stage of the T. cruzi-host cell interaction, the parasite is able to modulate the cellular metabolism in order to survives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of glycoconjugates, including glycolipids and glycoproteins, participate in the process of host-cell invasion by Trypanosoma cruzi and one of the most important carbohydrates involved on this interaction is sialic acid. It is known that parasite trans-sialidase participates with sialic acid in a coordinated fashion in the initial stages of invasion. Given the importance of these sialogycoconjugates, this review sets out various possible biological models for the interaction between the parasite and mammalian cells that possess a sialylated receptor/ligand system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this communication we review the results obtained with the confocal laser scanning microscope to characterize the interaction of epimastigote and trypomastigote forms of Trypanosoma cruzi and tachyzoites of Toxoplasma gondii with host cells. Early events of the interaction process were studied by the simultaneous localization of sites of protein phosphorylation, revealed by immunocytochemistry, and sites of actin assembly, revealed by the use of labeled phaloidin. The results obtained show that proteins localized in the interaction sites are phosphorylated. The process of formation of the parasitophorous vacuole was monitored by labeling the host cell surface with fluorescent probes for lipids (PKH26), proteins (DTAF) and sialic acid (FITC-thiosemicarbazide) before interaction with the parasites. Evidence was obtained indicating transfer of components of the host cell surface to the parasite surface in the beginning of the interaction process. We also analyzed the distribution of cytoskeletal structures (microtubules and microfilaments visualized with specific antibodies), mitochondria (visualized with rhodamine 123), the Golgi complex (visualized with C6-NBD-ceramide) and the endoplasmic reticulum (visualized with anti-reticulin antibodies and DIOC6) during the evolution of intracellular parasitism. The results obtained show that some, but not all, structures change their position during evolution of the intracellular parasitism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Green mould is a serious disease of commercially grown mushrooms, the causal agent being attributed to the filamentous soil fungus Triclzodenna aggressivum f. aggressivu11l and T. aggressivum f. ellropaellm. Found worldwide, and capable of devastating crops, this disease has caused millions of dollars in lost revenue within the mushroom industry. One mechanism used by TricllOdenlla spp. in the antagonism of other fungi, is the secretion of lytic enzymes such as chitinases, which actively degrade a host's cell wall. Therefore, the intent of this study was to examine the production of chitinase enzymes during the host-parasite interaction of Agaricus bisporus (commercial mushroom) and Triclzodemza aggressivum, focusing specifically on chitinase involvement in the differential resistance of white, off-white, and brown commercial mushroom strains. Chitinases isolated from cultures of A. bisporus and T. aggressivu11l grown together and separately, were identified following native PAGE, and analysis of fluorescence based on specific enzymatic cleavage of 4-methylumbelliferyl glucoside substrates. Results indicate that the interaction between T. aggressivulll and A. bisporus involves a complex enzyme battle. It was determined that T. aggressivum produces a number of chitinases that appear to correlate to those isolated in previous studies using biocontrol strains of T. Izarziallilm. A 122 kDa N-acetylglucosaminidase of T. aggressivu11l revealed the highest and most variable activity, and is therefore believed to be an important predictor of antifungal activity. Furthermore, results indicate that brown strain resistance of mushrooms may be related to high levels of a 96 kDa N-acetylglucosaminidase, which showed elevated activity in both solitary and dual cultures with T. aggressivum. Overall, each host-parasite combination produced unique enzyme profiles, with the majority of the differences seen between day 0 and day 6 for the extracellular chitinases. Therefore, it was concluded that the antagonistic behaviour of T. aggressivli1ll does not involve a typical response, always producing the same types and levels of enzymes, but that mycoparasitism, specifically in the form of chitinase production, may be induced and regulated based on the host presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of our knowledge concerning the virulence determinants of pathogenic fungi comes from the infected host, mainly from animal models and more recently from in vitro studies with cell cultures. The fungi usually present intra- and/or extracellular host-parasite interfaces, with the parasitism phenomenon dependent on complementary surface molecules. Among living organisms, this has been characterized as a cohabitation event, where the fungus is able to recognize specific host tissues acting as an attractant, creating stable conditions for its survival. Several fungi pathogenic for humans and animals have evolved special strategies to deliver elements to their cellular targets that may be relevant to their pathogenicity. Most of these pathogens express surface factors that mediate binding to host cells either directly or indirectly, in the latter case binding to host adhesion components such as extracellular matrix (ECM) proteins, which act as 'interlinking' molecules. The entry of the pathogen into the host cell is initiated by fungal adherence to the cell surface, which generates an uptake signal that may induce its cytoplasmic internalization. Once this is accomplished, some fungi are able to alter the host cytoskeletal architecture, as manifested by a rearrangement of microtubule and microfilament proteins, and this can also induce epithelial host cells to become apoptotic. It is possible that fungal pathogens induce modulation of different host cell pathways in order to evade host defences and to foster their own proliferation. For a number of pathogens, the ability to bind ECM glycoproteins, the capability of internalization and the induction of apoptosis are considered important factors in virulence. Furthermore, specific recognition between fungal parasites and their host cell targets may be mediated by the interaction of carbohydrate-binding proteins, e.g., lectins on the surface of one type of cell, probably a parasite, that combine with complementary sugars on the surface of host-cell. These interactions supply precise models to study putative adhesins and receptor-containing molecules in the context of the fungus-host interface. The recognition of the host molecules by fungi such as Aspergillus fumigatus, Paracoccidioides brasiliensis and Histoplasma capsulatum, and their molecular mechanisms of adhesion and invasion, are reviewed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)