990 resultados para Host Plant
Resumo:
Foraging adults of phytophagous insects are attracted by host-plant volatiles and supposedly repelled by volatiles from non-host plants. In behavioural control of pest insects, chemicals derived from non-host plants applied to crops are expected to repel searching adults and thereby reduce egg laying. How experience by searching adults of non-host volatiles affects their subsequent searching and oviposition behaviour has been rarely tested. In laboratory experiments, we examined the effect of experience of a non-host-plant extract on the oviposition behaviour of the diamondback moth (DBM), Plutella xylostella, a specialist herbivore of cruciferous plants. Naive ovipositing DBM females were repelled by an extract of dried leaves of Chrysanthemum morifolium, a non-host plant of DBM, but experienced females were not repelled. Instead they were attracted by host plants treated with the non-host-plant extract and laid a higher proportion of eggs on treated than on untreated host plants. Such behavioural changes induced by experience could lead to host-plant range expansion in phytophagous insects and play an important role in determining outcome for pest management of some behavioural manipulation methods.
Resumo:
1. Species in the genus Neoseiulus are considered to be generalist predators. with some species used in biological control programmes against phytophagous mites and insects. 2. A general survey of Neoseiulus species in inland Australia indicated that different species are associated with particular tree species. This pattern of host plant use was investigated for four Neoseiulus species (N. buxeus, N. cappari, N. brigarinus, N. eremitus) by means of a sampling programme through time and across space. 3. Each species of Neoseiulus was collected entirely or mostly from one species of tree: little or no overlap was detected despite the tree species growing in well-mixed stands. Host plant specificity thus appears to be strong in this genus. 4. Species in two other genera (Pholaseius and Australiseiulus), also considered to be predatory, showed a similar association with particular tree species. 5. The implications for the use of these predators in biological control are considerable. In particular, phytoseiid species with specific needs in terms of host plants may not be suitable for use as general purpose predators. Meeting the needs of phytoseiids through the modification of host plant attributes may be a step towards enhancing their efficacy as biological control agents.
Resumo:
We develop a general theoretical framework for exploring the host plant selection behaviour of herbivorous insects. This model can be used to address a number of questions, including the evolution of specialists, generalists, preference hierarchies, and learning. We use our model to: (i) demonstrate the consequences of the extent to which the reproductive success of a foraging female is limited by the rate at which they find host plants (host limitation) or the number of eggs they carry (egg limitation); (ii) emphasize the different consequences of variation in behaviour before and after landing on (locating) a host (termed pre- and post-alighting, respectively); (iii) show that, in contrast to previous predictions, learning can be favoured in post-alighting behaviour-in particular, individuals can be selected to concentrate oviposition on an abundant low-quality host, whilst ignoring a rare higher-quality host; (iv) emphasize the importance of interactions between mechanisms in favouring specialization or learning. (C) 2002 Elsevier Science Ltd.
Resumo:
Stink bugs are seed/fruit sucking insects feeding on an array of host plants. Among them, an exotic tree called privet, Ligustrum lucidum Ait. (Oleaceae), is very common in the urban areas of the Brazilian subtropics, where it is utilized as food source and shelter for over a decem species of bugs, year round. The species composition, their performance and abundance on this host, and possible causes for this association are discussed and illustrated.
Resumo:
The amount of nitrogen required to complete an insect's life cycle may vary greatly among species that have evolved distinct life history traits. Myrmecophilous caterpillars in the Lycaenidae family produce nitrogen-rich exudates from their dorsal glands to attract ants for protection, and this phenomenon has been postulated to shape the caterpillar's host-plant choice. Accordingly, it was postulated that evolution towards myrmecophily in Lycaenidae is correlated with the utilization of nitrogen-rich host plants. Although our results were consistent with the evolutionary shifts towards high-nutrient host plants serving as exaptation for the evolution of myrmecophily in lycaenids, the selection of nitrogen-rich host plants was not confined to lycaenids. Butterfly species in the nonmyrmecophilous family Pieridae also preferred nitrogen-rich host plants. Thus, we conclude that nitrogen is an overall important component in the caterpillar diet, independent of the level of myrmecophily, as nitrogen can enhance the overall insect fitness and survival. However, when nitrogen can be obtained through alternative means, as in socially parasitic lycaenid species feeding on ant brood, the selective pressure for maintaining the use of nutrient-rich host plants is relaxed, enabling the colonization of nitrogen-poor host plants.
Resumo:
Genetic differentiation is a consequence of the combination of drift and restriction in gene flow between populations due to barriers to dispersal, or selection against individuals resulting from inter-population matings In phytophagous insects, local adaptation to different kinds of host plants can sometimes lead to reproductive isolation and thus to genetic structuring, or even to speciation Acanthoscelides. obtectus Say is a bean bruchid specialized on beans of the Phaseolus vulgaris group, attacking both wild and domesticated forms of P vulgaris., and P coccineus This study reveals that the genetic structure of populations of this bruchid is explained mainly by their geographical location and is not related to a particular kind (wild or domesticated) of bean In contrast, the species of bean might have led, to some extent, to genetic structuring in these bruchids, although our sampling is too limited to address such process unambiguously. If confirmed, it would corroborate preliminary results found for the parasitoid species that attack Acanthoscelides species, which might show a genetic structure depending on the species of host plant
Resumo:
Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of genetic diversity in AMF populations. This is largely because of difficulties in isolation and cultivation of the fungi in a clean system allowing reliable genotyping to be performed. A population of the arbuscular mycorrhizal fungus Glomus intraradices growing in an in vitro cultivation system was studied using newly developed simple sequence repeat (SSR), nuclear gene intron and mitochondrial ribosomal gene intron markers. The markers revealed a strong differentiation at the nuclear and mitochondrial level among isolates. Genotypes were nonrandomly distributed among four plots showing genetic subdivisions in the field. Meanwhile, identical genotypes were found in geographically distant locations. AMF genotypes showed significant preferences to different host plant species (Glycine max, Helianthus annuus and Allium porrum) used before the fungal in vitro culture establishment. Host plants in a field could provide a heterogeneous environment favouring certain genotypes. Such preferences may partly explain within-population patterns of genetic diversity.
Resumo:
The plant architecture hypothesis predicts that variation in host plant architecture influences insect herbivore community structure, dynamics and performance. In this study we evaluated the effects of Macairea radula (Melastomataceae) architecture on the abundance of galls induced by a moth (Lepidoptera: Gelechiidae). Plant architecture and gall abundance were directly recorded on 58 arbitrarily chosen M. radula host plants in the rainy season of 2006 in an area of Cerrado vegetation, southeastern Brazil. Plant height, dry biomass, number of branches, number of shoots and leaf abundance were used as predicting variables of gall abundance and larval survival. Gall abundance correlated positively with host plant biomass and branch number. Otherwise, no correlation (p > 0.05) was found between gall abundance with shoot number or with the number of leaves/plant. From a total of 124 galls analyzed, 67.7% survived, 14.5% were attacked by parasitoids, while 17.7% died due to unknown causes. Larvae that survived or were parasitized were not influenced by architectural complexity of the host plant. Our results partially corroborate the plant architecture hypothesis, but since parasitism was not related to plant architecture it is argued that bottom-up effects may be more important than top-down effects in controlling the population dynamics of the galling lepidopteran. Because galling insects often decrease plant fitness, the potential of galling insects in selecting for less architectural complex plants is discussed.
Resumo:
Despite the speciose fauna of gall-inducing insects in the Neotropical region, little is known about their taxonomy. On the other hand, gall morphotypes associated with host species have been extensively used as a surrogate of the inducer species worldwide. This study reviewed the described gall midges and their galls to test the generalization on the use of gall morphotypes as surrogates of gall midge species in the Brazilian fauna. We compiled taxonomic and biological data for 196 gall midge species recorded on 128 host plant species. Ninety two percent of those species were monophagous, inducing galls on a single host plant species, whereas only 5.6% species were oligophagous, inducing galls on more than one congeneric host plant species. Only four species induced galls on more than one host plant genus. We conclude that gall morphotypes associated with information on the host plant species and attacked organs are reliable surrogates of the gall-inducing species.
Resumo:
The gall inducer Clusiamyia nitida Maia, 1996 (Diptera, Cecidomyiidae) often infests the shrub Clusia lanceolata (Camb.) (Clusiaceae) in the Neotropical vegetation of restinga of Rio de Janeiro State, Brazil. Leaves of Clusia lanceolata host up to 20 spheroid galls and show variation in their shape. We aimed to evaluate the effect of gall's intensity on leaves of Clusia lanceolata, and the extension of gall's impact on adjacent non-galled leaves. We analyzed the effect of the number of galls on leaf area, biomass, specific area and leaf appearance from 509 leaves of 14 individual plants. The results showed that differences of individual plants, pairs of leaves, and gall presence were responsible for more then 90% of variation on infested leaves. Variation on parasitic intensity level created differences in leaf response. Under moderate gall attack characterized by scattered galls on a leaf, the increase of the number of galls caused an increase of leaf biomass and area, and a decrease of specific area. The specific area was smaller also under high attack intensity, characterized by coalescent galls on a leaf. In those cases of extremely high parasitic intensity, galled leaves became deformed and the surface area was severely reduced. Leaf deformation due to gall attack led to early leaf abscission, indicated by the 90% of deformed leaves found in the youngest leaf pair of the branch. There was insufficient evidence that the impact of galls on leaf morpho-physiological parameters extended beyond the attacked leaves, because ungalled leaves did not change significantly when their opposite leaf had been galled.
Resumo:
Effects of sex, host-plant deprivation and presence of conspecific immatures on the cannibalistic behavior of wild Ascia monuste orseis (Godart) (Lepidoptera, Pieridae). The specialist cabbage caterpillar Ascia monuste orseis (Lepidoptera, Pieridae) feeds on plants of the Brassicaceae family, but may eventually ingest conspecific eggs and larvae during the larval stage. The present study examines feeding behavior of 4th and 5th instar cabbage caterpillars in relation to sex, host-plant deprivation and presence of conspecifics. We recorded number of egg ingested per larvae, developmental indices and duration of feeding, exploratory and resting behavior. Kale deprived caterpillars presented high rates of cannibalism, development delay and decreased fecundity. Cannibalism rates were not influenced by the sex of the larvae. In general, the presence of conspecific eggs did not interfere with the frequency and duration of the categorical behavioral events. We conclude that food availability is a strong factor influencing the extent to which A. monuste orseis caterpillars cannibalize.
Resumo:
Strepsicrates smithiana Walsingham (Lepidoptera, Tortricidae): first record from Chile and a newly documented host plant. Strepsicrates smithiana Walsingham, 1892 (Lepidoptera, Tortricidae) is recorded for the first time from Chile. Male and female adults were reared from leaf-tying larvae collected on Myrica pavonis (Myricaceae), which is a new host plant record for S. smithiana.
Resumo:
First host plant records for Iridopsis hausmanni Vargas (Lepidoptera, Geometridae) in the coastal valleys of northern Chile. The trees Haplorhus peruviana Engl. and Schinus molle L. (Anacardiaceae) are mentioned as the first host plant records for the little known native moth Iridopsis hausmanni Vargas, 2007 (Lepidoptera, Geometridae, Ennominae) in the coastal valleys of the northern Chilean Atacama Desert. This is also the first record of Anacardiaceae as host plant for a Neotropical species of Iridopsis Warren, 1894.