972 resultados para Hormone-levels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effect of non-ventilation of the incubator during the first 10 days of incubation and its combination with dexamethasone administration at day 16 or 18 of incubation on hatching parameters and embryo and post-hatch chick juvenile physiology. A total of 2400 hatching eggs produced by Cobb broiler breeders were used for the study. Blood samples were collected at day 18 of incubation, at internal pipping stage (IP), at the end of hatch (day-old chick) and at 7-daypost-hatch for T-3, T-4 and corticosterone levels determination. From 448 to 506 h of incubation, the eggs were checked individually in the hatcher every 2 h for pipping and hatching. The results indicate that non-ventilation during the first 10-day shortened incubation duration up to IP, external pipping (EP) and hatch, had no effect on hatchability and led to higher T-3 levels at IP but lower corticosterone levels at 7-day-post-hatch. The injection of dexamethasone at days 16 and 18 of incubation affected hatching and blood parameters in both the ventilated and non-ventilated embryos differentially and the effect was dependent on the age of the embryo. Dexamethasone increased T-3 levels and T-3/T-4 ratios but the effect was greater with early non-ventilation of eggs. Dexamethasone decreased hatchability but the effect was greater when injected at day 16 and especially in ventilated embryos. The effects of incubation protocols and dexamethasone treatments during incubation were still apparent in the hatched chicks until 7 days of age. The changes in T-3, T-4 and corticosterone levels observed in response to the early incubation conditions and late dexamethasone treatments in this study suggest that incubator ventilation or non-ventilation may influence the hypothalamic-pituitary-adrenal axis (HPA) regulation of stress levels (in terms of plasma corticosterone levels) and thyroid function in the embryo with impact on incubation duration, hatching events and early post-hatch life of the chick. Our results also suggest that some stages of development are more sensitive to dexamethasone administration as effects can be influenced by early incubation protocols. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate some factors likely to be involved in the maternal and fetal growth impairment due to alimentary protein deficiency, the circulating levels of triiodothyronine (T 3) and thyroxine (T 4) were studied in 4 young (45-day-old) female rat groups: control and malnourished, both nonpregnant and pregnant; similarly schedules groups were studied using adult (100-day-old) rats. Circulating levels of T 4 were higher in nonpregnant, malnourished young rats in their corresponding controls. T 3 levels were higher in young malnourished animals and lower in adult malnourished animals, nonpregnant or pregnant, as compared to controls. Pups from young malnourished mothers showed significantly lower birth weights than those from controls. The present results suggest that there are age differences in thyroid function, as affected by protein-calorie malnutrition in pregnant and non-pregnant rats. On the other hand, the circulating thyroid hormone levels were not importantly affected by the mother dietary protein restriction under our experimental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In girls and adolescents with Turner syndrome (TS), is there a correlation between serum AMH levels and karyotype, spontaneous puberty and other biochemical markers of ovarian function, or growth hormone (GH) therapy? SUMMARY ANSWER: Serum anti-Müllerian hormone (AMH) correlates with karyotype, pubertal development, LH, FSH and are measurable in a higher percentage of TS patients under GH therapy. WHAT IS KNOWN ALREADY: Most girls with TS suffer from incomplete sexual development, premature ovarian failure and infertility due to abnormal ovarian folliculogenesis. Serum AMH levels reflect the ovarian reserve in females, even in childhood. STUDY DESIGN, SIZE, DURATION: Cross-sectional study investigating 270 karyotype proven TS patients aged 0-20 years between 2009 and 2010. PARTICIPANTS/MATERIALS, SETTINGS, METHODS: Studies were conducted at three University Children's hospitals in Europe. Main outcome measures were clinical data concerning pubertal development as well as laboratory data including karyotype, serum AMH, LH, FSH, estradiol (E2), inhibin B and IGF. RESULTS AND THE ROLE OF CHANCE: Serum AMH was detectable in 21.9% of all TS girls and correlated strongly with karyotypes. A measurable serum AMH was found in 77% of TS girls with karyotype 45,X/46,XX, in 25% with 'other' karyotypes and in only 10% of 45,X TS girls. A strong relationship was also observed for measurable serum AMH and signs of spontaneous puberty such as breast development [adjusted odds ratio (OR) 19.3; 95% CI 2.1-175.6; P = 0.009] and menarche (crude OR 47.6; 95% CI 4.8-472.9; P = 0.001). Serum AMH correlated negatively with FSH and LH, but did not correlate with E2 and inhibin B. GH therapy increased the odds of having measurable AMH in TS (adjusted OR 4.1; 95% CI 1.9-8.8; P < 0.001). LIMITATIONS, REASONS FOR CAUTION: The cross-sectional design of the study does not allow longitudinal interpretation of the data; for that further studies are needed. High percentage of non-measurable AMH levels in the cohort of TS require categorized analysis. WIDER IMPLICATIONS OF THE FINDINGS: Serum AMH levels are a useful marker of the follicle pool and thus ovarian function in pediatric patients with TS. These findings are in line with the published literature. The finding that GH therapy may affect AMH levels is novel, but must be confirmed by future longitudinal studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was conducted to investigate the effects of rumen-protected tryptophan (125g tryptophan per day) in heifers and dairy cows. Blood samples from dairy cows and heifers were collected for 24h in 3-h intervals on the day before tryptophan supplementation, on day 2, 5 and 7 of tryptophan supplementation, and in heifers additionally on d 14 after tryptophan supplementation was ceased. Plasma tryptophan, melatonin, serotonin, and prolactin concentrations were determined. Tryptophan plasma concentrations on d 5 were augmented at day (11:00h) and nighttime (02:00h), (P<0.05) in response to tryptophan supplementation in heifers by 119% and in dairy cows by 47%, respectively, as compared with d 0. Melatonin increased (P<0.05) in response to tryptophan supplementation in heifers, but not in cows. The effect of tryptophan supplementation on plasma tryptophan and melatonin was reversible as demonstrated in heifers on d 14 after cessation of tryptophan supplementation. Serotonin and prolactin in plasma did not respond to tryptophan supplementation. However, milk yield during morning milking increased significantly in tryptophan supplemented cows on d 1, 3 and 4 as compared to the day before tryptophan supplementation. Additional blood samples were taken during afternoon milking in cows at 1-min intervals for the analyses of oxytocin and prolactin on the day before the start and on d 7 of tryptophan supplementation. Milk flow curves were recorded during milking. No effect of tryptophan supplementation on the milking related release of oxytocin and prolactin and on any characteristic of milk flow was observed. In conclusion, tryptophan supplementation caused increased plasma tryptophan in cows and heifers and plasma melatonin in heifers. However, plasma serotonin, prolactin and oxytocin release in cows remained unchanged by tryptophan supplementation. Milk yield at morning milking increased slightly and transiently in response to tryptophan supplementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rice (Oryza sativa L.) homeobox gene OSH1 causes morphological alterations when ectopically expressed in transgenic rice, Arabidopsis thaliana, and tobacco (Nicotiana tabacum L.) and is therefore believed to function as a morphological regulator gene. To determine the relationship between OSH1 expression and morphological alterations, we analyzed the changes in hormone levels in transgenic tobacco plants exhibiting abnormal morphology. Levels of the plant hormones indole-3-acetic acid, abscisic acid, gibberellin (GA), and cytokinin (zeatin and trans-zeatin [Z]) were measured in leaves of OSH1-transformed and wild-type tobacco. Altered plant morphology was found to correlate with changes in hormone levels. The more severe the alteration in phenotype of transgenic tobacco, the greater were the changes in endogenous hormone levels. Overall, GA1 and GA4 levels decreased and abscisic acid levels increased compared with wild-type plants. Moreover, in the transformants, Z (active form of cytokinin) levels were higher and the ratio of Z to Z riboside (inactive form) also increased. When GA3 was supplied to the shoot apex of transformants, internode extension was restored and normal leaf morphology was also partially restored. However, such GA3-treated plants still exhibited some morphological abnormalities compared with wild-type plants. Based on these data, we propose the hypothesis that OSH1 affects plant hormone metabolism either directly or indirectly and thereby causes changes in plant development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses (100, 200, 400 mg/kg/bw) of aqueous extract of asparagus roots. All dosages were administered orally for 28 days. Blood samples were taken from rats to evaluate serum levels of Gonadotropin releasing hormone (GnRH), follicular stimulating hormone (FSH), Luteinal hormone (LH), estrogen, and progesterone hormones. The ovaries were removed, weighted, sectioned, and studied by light microscope. Results: Dose-dependent aqueous extract of asparagus roots significantly increased serum levels of GnRH, FSH, LH, estrogen, and progestin hormones compared to control and sham groups. Increase in number of ovarian follicles and corpus luteum in groups treated with asparagus root extract was also observed (p<0.05). Conclusion: Asparagus roots extract stimulates secretion of hypothalamic- pituitary- gonadal axis hormones. This also positively affects oogenesis in female rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluorotelomer alcohols (FTOHs) have shown estrogenic activity in vitro and in vivo, but the mechanism of this activity is not known. In this study, 18-week-old zebrafish (Danio rerio) were exposed to 0, 0.03, 0.3 and 3.0 mg/l 1H, 1H, 2H, 2H-perfluorooctan-1-ol (6:2 ETCH) for 7 days, and the effects on plasma sex hormone levels were measured followed by use of real-time PCR to examine selected gene expression in hypothalamic-pituitary-gonadal (HPG) axis and liver. Exposure to 6:2 FTOH significantly increased plasma estradiol (E2) and testosterone (T) levels in both males and females. Furthermore, the ratio of T/E2 was reduced in females while increased in males. In females, the increase of E2 was accompanied by up-regulated hepatic estrogenic receptor alpha (ER alpha) and vitellogenin (VTG1 and VTG3) expression. In males, the elevation of the T level is consistent with the up-regulation of cytochrome P450 c17 alpha-hydroxylase, 17, 20-lase (CYP17) and the down-regulation of cytochrome P450 aromatase A (CYP19A). The present study demonstrated that waterborne exposure to 6:2 FTOH alter plasma sex hormone levels and the ratio of T/E2, as well as the transcriptional profiles of some genes in the HPG axis and liver. The results suggested that FTOHs may disturb fish reproduction through endocrine disrupted activity. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The relative plasticity hypothesis predicts that alternative tactics are associated with changes in steroid hormone levels. In species with alternative male reproductive tactics, the highest androgen levels have usually been reported in dominant males. However, in sociable species, dominant males show amicable behaviors to gain access to females, which might conflict with high testosterone levels. We compared testosterone, corticosterone, and resting metabolic rate in male striped mice (Rhabdomys pumilio) following a conditional strategy with three different reproductive tactics: (i) philopatric group-living males, (ii) solitary-living roamers, (iii) dominant but sociable group-living territorial breeders. Philopatrics had the lowest testosterone but highest corticosterone levels, suggesting that they make the best of a bad job. Dominant territorial breeders had lower testosterone levels than roamers, which have a lower competitive status. Roamers had the highest testosterone levels, which might promote risky behavior, such as invading territories defended by territorial males. Roamers also had lower resting metabolic rates than either type of group-living males. Our results suggest that dominant males' testosterone levels reflect a trade-off between low testosterone amicable behavior and high testosterone dominance behavior.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sex hormone binding globulin (SHBG) is a glycoprotein composed of two 373-amino-acid subunits. The SHBG gene and a promotor region have been identified. The SHBG receptor has yet to be cloned but is known to act through a G-protein-linked second-messenger system following plasma membrane binding. The principal function of SHBG has traditionally been considered to be that of a transport protein for sex steroids, regulating circulating concentrations of free (unbound) hormones and their transport to target tissues. Recent research suggests that SHBG has functions in addition to the binding and transport of sex steroids. Observational studies have associated a low SHBG concentration with an increased incidence of type 2 diabetes mellitus (DM) independent of sex hormone levels in men and women. Genetic studies using Mendelian randomization analysis linking three single nucleotide polymorphisms of the SHBG gene to risk of developing type 2 DM suggest SHBG may have a role in the pathogenesis of type 2 DM. The correlation between SHBG and insulin resistance that is evident in a number of cross-sectional studies is in keeping with the suggestion that the association between SHBG and incidence of type 2 DM is explained by insulin resistance. Several potential mechanisms may account for this association, including the identification of dietary factors that influence SHBG gene transcription. Further research to characterize the SHBG-receptor and the SHBG second messenger system is required. An interventional study examining the effects on insulin resistance of altering SHBG concentrations may help in determining whether this association is causal.