981 resultados para Hopkins River Estuary (Vic.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies examining recruitment processes for soft-sediment macroinvertebrate fauna in intermittent estuaries are rare and most studies of active habitat selection have been tested in the laboratory rather than the field. The present field study examined whether recruitment of the infaunal bivalve Soletellina alba was influenced by water depth and sediment particle size in the intermittent Hopkins River estuary, southern Australia. The number of recruits in sediment trays differed between water depths, but active habitat selection was not evident across treatments of varying sediment particle size. The use of sediments with varying particle sizes also provided an opportunity to identify potential discontinuities in body-size distributions of recruits associated with varying habitat architecture. The length (mm) of recruits was converted to the same scale used to express sediment particle size (i.e. phi units: phi = − log2 of sediment particle size). The size of recruits differed across water depths, but did not differ across treatments with fine (phi = 3) versus coarse (phi = 1) sediment, and no relationships were apparent between bivalve size and sediments consisting of varying particle size. These patterns of recruitment do not correspond with the distribution of adult S. alba within the Hopkins River estuary. Previous sampling has shown that abundances of juvenile and adult S. alba are variable across time, site and water depth, but are often greater at the deeper water depth (1.05 m below the Australian Height Datum). However, recruitment during the present study was greatest at the shallower water depth (0.05 m below AHD), and the apparent absence of active habitat selection suggests that the distribution of adults is unlikely to be attributable to differences in recruitment associated with sediments of varying particle size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infaunal bivalve Soletellina alba is susceptible to mass mortalities during annual winter flooding in the Hopkins River Estuary, southern Australia. Periods of low salinity (≤1) are the likely cause of these mass mortality events, which can occur in seasonally-closed estuaries when high winter flows are sufficient to flush all salt water from the estuary. Core samples of S. alba were collected from two water depths across four times and at three sites near the mouth of the estuary. Minimal to zero abundances of large S. alba (>1 mm) were expected to be sampled, particularly at the shallower water depth, during a typical winter flood event. However, the present study occurred during a period of drought, which led to the absence of winter flooding. This absence of winter flooding prevented the occurrence of lethal salinities (i.e. ≤1) in the estuary during this period and a greater number of living S. alba adults were sampled. Abundances of juvenile and adult S. alba were still variable, even in the absence of winter flooding, and reflected an interaction between date, site and water depth. However, no mass mortalities of adults were observed during the drought conditions in contrast to what occurs during typical winter flood events and provides support for the hypothesis that winter flooding is responsible for past mass mortalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the factors affecting the distribution and abundance of epifaunal caridean shrimps in seagrass meadows of the Hopkins River estuary in south-western Victoria, Australia, and investigated the life history patterns of the freshwater Parana australiensis, found for the first time in estuaries. Adult and sub-adult shrimps were surveyed in seagrass meadows along the estuary over two years, and their planktonic larvae were surveyed in adjacent waters. Three species were collected. The marine Palaemon serenus occurred only near the mouth, summer to autumn, in high salinities. The marine/estuarine Macrobrachium intermedium occurred throughout the estuary. Adults were most abundant in late autumn, and least abundant in summer (unlike trends reported in marine meadows). Densities were higher and less variable in downstream meadows. P. australiensis occurred in the upper estuary all year, most abundantly in spring, due to migration from the river after peak discharge. Ovigerous females dominated, while males, showing less migration into the estuary, dominated above estuarine influence. Adults disappeared from the estuary in summer as salinity rose. Breeding period for P. australiensis was briefer in the estuary (September-December) than upstream (July-April). M. intermedium began breeding later in the upper estuary (November/December-March) than in the lower estuary (October-March), probably reflecting a physiological response to lower salinity, rather than an interaction with P. australiensis. No ovigerous P. serenus were found in the estuary. Larvae of P. australiensis and M intermedium occurred abundantly throughout the estuary, but P. serenus larvae did not. P. australiensis was an early coloniser to the plankton after peak discharge (November-December). Larvae concentrated in the deep saline layer at the head of the intruding salt wedge, thus probably maintaining longitudinal position. Diurnal vertical migrations were evident within the salt wedge, and in a deep pool above tidal influence. M. intermedium larvae occurred October-May in the lower estuary and November-April in the upper estuary, peaking in abundance one to two months after P. australiensis. They were associated with low surface flows and surface salinities greater than 10, over an anoxic deeper layer. All three species exhibited extended development of euryhaline larvae in the laboratory. Tolerances and optimal salinities of larvae of the three species reflected their distributions. M. intermedium was the most euryhaline species. P. australiensis larvae were tolerant of higher salinities than juveniles of adults: capable of developing in salinity of at least 15. Most P. australiensis juveniles recruited to the estuary November-December, after which numbers declined dramatically. After settlement, most recruits probably migrated upstream out of the estuary. Two cohorts of M. intermedium recruited to the estuary from larvae in summer (December and February), but some juveniles also migrated from adjacent coastal waters. Post-larval migration was at least as important a determinant of abundance as direct recruitment from estuarine, planktonic larvae in all three species. Distributions among seagrass meadows along the estuary were determined primarily by physico-chemical patterns driven by hydrological changes. Seasonal variations in salinity and temperature were strongly associated with seasonal variations in shrimp abundance. Salinity tolerances of adults of the three species reflected their distribution patterns. Biotic interactions were more important in determining distributions within meadows. P. australiensis, when abundant, were associated with seagrass biomass. M. intermedium were also, but when seagrass was sparsest and least extensive. The two species apparently partitioned the seagrass meadow according to depth in early summer. Laboratory experiments suggested P. australiensis was displaced from deeper water by M. intermedium. Preference for vegetative complexity and competition for position within meadows suggest the underlying importance of predation in regulating shrimp populations. A survey of south-eastern Australian estuaries found P. australiensis larvae abundant in all stable, open, well-developed, salt-wedge estuaries where adults were abundant. Adults were most abundant in low salinities among submerged leafy macrophytes. Reproductive traits of P. australiensis were compared in estuarine and fresh reaches of three rivers. Early in the breeding season, egg size was smaller, and (size-specific) egg number larger in estuaries than upstream. A trade-off between egg size and egg number resulted in no difference in total (size-specific) reproductive investment between locations. Reproductive investment tended to decrease at some locations over the breeding season, and this decrease was a result of decreased egg size in most cases. The decrease in reproductive investment probably reflected reduced food availability for the adult, while the reduced egg size was probably a response to improved conditions for larval development. In the Hopkins River, larger egg size at upstream sites was reflected in larger early stage larvae. Later stage larvae were larger in the estuary, suggesting more favourable conditions for larval development. Allozyme electrophoresis showed the P. australiensis populations in each of the three rivers to be distinct. Allozyme frequencies were not different within the Hopkins River, but upstream and estuarine locations in the Curdies and Gellibrand were different. Although some variation in reproductive traits within catchments may have been due to genotypic differences, trade-offs between egg size and number, and decreases in egg size over summer were probably due to plastic responses to environmental cues. It is proposed P. australiensis inhabits and reproduces in both estuarine and freshwater environments by plastic response to environmental conditions. Recruitment to estuaries is dependent on the presence of suitable adult, littoral habitat, and a stable salt wedge for larval retention. Estuaries are important recruitment sites for P. australiensis, potentially allowing an extra brood each year before riverine recruitment. Estuarine broods could constitute a large part of the total fecundity of P. australiensis females. Euryhaline larvae and estuarine recruitment of P. australiensis suggest marine transport of larvae between estuaries as a possible dispersal mechanism for Paratya species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hopkins River drains grazing farmland for most of its length. Nutrients and phytoplankton populations in the Hopkins Estuary are strongly affected by the hydrodynamic cycle. The findings of this research show that nutrient and chlorophyll a levels in the Hopkins Estuary are high enough to indicate that future algal problems may occur and that management of nutrients entering its catchment and improvement of river banks are of high importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The densities of two common intertidal/shallow subtidal bivalves, Soletellina alba and Arthritica helmsi, were sampled in vegetated and unvegetated habitats of the Hopkins River estuary on three occasions during the  autumn/winter 1995.Winter flooding coincided with mass mortalities of the infaunal bivalve S. alba, but not A. helmsi. Mortalities were apparent for individuals living deeper in the sediment (≈35 cm) in vegetated and unvegetated habitats, but small S. alba (<1mm) were less susceptible to mortality than larger individuals (>1mm). Mortalities were similar across different habitat types and sediment depths, and at multiple sites within close proximity to the estuary mouth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macroinvertebrates living within the sediments of the Hopkins River estuary were examined during 1997. Differences in the abundance and composition of faunal assemblages were identified between vegetated and unvegetated habitats and between the lower, middle and upper sections of the estuary. The numbers of taxa and individuals present were found to be similar to that of other periodically opened estuaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The population dynamics of the infaunal bivalve Soletellina alba was investigated at three sites situated within close proximity to the mouth of the Hopkins River estuary. The initial study design was planned to examine the importance of winter flooding to the persistence of this bivalve mollusc within the Hopkins estuary, since mass mortalities have been observed during previous years coincident with periods of winter flooding. Unfortunately, the climatic conditions experienced during this study were atypical compared to the long-term average, so detailed sampling was limited to two, unanticipated, non-flood years rather than two, highly anticipated, flood years. This hampered my ability to conduct complete tests of the importance of winter flooding. Patterns of river discharge and the frequency and duration of mouth opening and closing differed greatly from that expected. Unexpectedly, periods of mouth closure were not always associated with periods of minimal river discharge; low salinities were another unexpected result during an extended period of mouth closure during 1998. As expected, salinities varied considerably with increasing water depth when the estuary mouth was open. Mouth closure lead to salinities becoming more uniform between water depths but hypoxic and anoxic conditions became evident via stratification in the water column at 1 m below the Australian Height Datum (AHD). Other than trends associated with increased water depth, significant variation was not evident between measurements of salinity taken from three sites within close proximity of the estuary mouth (approximately 500 m), or during changes in tide. The most pertinent anomaly was the absence of winter flooding. The distribution and abundance of juvenile and adult S. alba was variable across all Dates, Sites and Channel elevations (i.e. water depths) sampled during this study. An experimental test comparing the recruitment of juveniles at different channel elevations and in sediments of varying particle size was conducted during an exceptionally successful period of recruitment during 1999. The results of these tests showed that recruitment was greatest at the shallowest channel elevation used, and there was little evidence that sediment particle size influenced recruitment. In contrast to 1999, recruitment during 1997 or 1998 was extremely poor. Growth rates were monitored using tagged individuals held in caged and uncaged plots, which revealed that growth was highly variable among individuals, but not between Sites. These tests also revealed that growth was negligible during the colder, winter months, and that the fastest growing individuals were capable of growing 0.2 mm/day. Mixed results were obtained for tests of potential cage artifacts and the influence of handling. Caging and differing amounts of handling did not appear to influence growth, but there was evidence that cages and handling influenced bivalve condition and number of mortalities. These direct tests appeared to be the most appropriate method for determining growth rates of this species, since attempts to analyse length-frequency data were made difficult by the apparent convergence of cohorts, and shell aging is difficult due to the thin, fragile nature of the shell. As expected, mass mortalities were observed during the flood of 1996, but not during the two non-flood years of 1997 and 1998. There were, however, some considerable declines in abundances at some channel elevations during the two non-flood years. However, these declines were attributable to the complete disappearance of individuals, rather than the sudden presence of numerous, recently dead individuals that typify observed declines during winter flooding. The complete disappearance of individuals suggest that S. alba may be capable of post-settlement emigration, or that they were consumed by an unknown predator. Salinity tolerance tests showed that bivalves exposed to low salinities (≤6 ppt), exhibited poorer condition and took longer to re-burrow into sediments than those exposed to greater salinities (≥14 ppt), while death of bivalves exposed to salinities ≤1 ppt occurred after 8 days of exposure. These tests provide evidence that low salinities are probably the principal cause of mass mortalities during winter flooding, although the interaction between salinity, temperature and turbidity also deserve consideration. The results of this study indicate that certain aspects of winter flooding, especially salinity, are responsible for the mass mortalities of S. alba rather than the result of a short-lived life history. I hypothesise that the survival of very young juveniles (between 0.5 and 1 mm shell length) and rapid growth rates are important features of the life history of S. alba that explain its successful persistence within the Hopkins River estuary. The rapid rates of growth suggest that it may be possible for juveniles that survive winter flooding to grow, reach sexual maturity, and reproduce before the onset of the next flood event. Unfortunately, the increased survivorship of juveniles during periods of winter flooding was not demonstrated by this study because of the absence of winter flooding and also relatively poor recruitment. It is highly likely that this species is capable of completing it entire life cycle within the estuary since the absence of other nearby populations, together with periods of mouth closure, are likely to greatly limit the potential contribution made by larvae entering from the surrounding marine environment. This study has added considerably to our knowledge of how infauna cope with life in the intermittently closing estuaries that typify semi-arid coastlines in the Southern Hemisphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dietary importance of prey of estuary perch (Macquaria colonorum; Percicthyidae: Günther) was examined spatially, temporally and among size classes. Fish were collected from the Hopkins River, south-western Victoria, from September 1998 to February 1999. The species is a euryhaline, euryphagic carnivore with spatial, temporal and size class variations in diets. Fish caught from estuarine locations consumed primarily Paratya australiensis (40% IRI) while freshwater fish consumed mostly Tricopteran larvae (63.5% IRI). In both freshwater and estuarine locations, the relative importance of P. australiensis decreased with increasing length of fish. Diet changed seasonally, indicating opportunistic changes in prey. The species selected particular prey items relative to environmental availability (P. australiensis, Amarinus lacustrine).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A post Agnes study emphasizing environmental factors...weekly sampling at eight stations from 28 June to August 30, 1972. Spatial and temporal changes in the distribution of many factors, e.g., salinity, dissolved oxygen (DO), seston, particulate carbon and nitrogen, inorganic and organic fractions of dissolved nitrogen and phosphorus, and chlorophyll a were studied and compared to earlier extensive records. Patterns shown by the present data were compared especially with a local heavy storm that occurred in the Patuxent drainage basin during July 1963. Some interesting correlations were observed in the data. (PDF has 39 pages.)