20 resultados para Homomorphisms
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The following statements are proven: A correspondence of a semigroup in another one is a homomorphism if and only if when the entire prototype of the product of images contains (always) the product of their entire prototypes. The Kleene closure of the maximal rewriting of a regular language at a regular language substitution contains in the maximal rewriting of the Kleene closure of the initial regular language at the same substitution. Let the image of the maximal rewriting of a regular language at a regular language substitution covers the entire given regular language. Then the image of any word from the maximal rewriting of the Kleene closure of the initial regular language covers by the image of a set of some words from the Kleene closure of the maximal rewriting of this given regular language everything at the same given regular language substitution. The purposefulness of the ¯rst statement is substantiated philosophically and epistemologically connected with the spirit of previous mathematical results of the author. A corollary of its is indicated about the membership problem at a regular substitution.
Resumo:
We investigate the automatic regularity of continuous algebra homomorphisms between Riesz algebras of regular operators on Banach lattices.
Resumo:
The classification of minimal sets is a central theme in abstract topological dynamics. Recently this work has been strengthened and extended by consideration of homomorphisms. Background material is presented in Chapter I. Given a flow on a compact Hausdorff space, the action extends naturally to the space of closed subsets, taken with the Hausdorff topology. These hyperspaces are discussed and used to give a new characterization of almost periodic homomorphisms. Regular minimal sets may be described as minimal subsets of enveloping semigroups. Regular homomorphisms are defined in Chapter II by extending this notion to homomorphisms with minimal range. Several characterizations are obtained. In Chapter III, some additional results on homomorphisms are obtained by relativizing enveloping semigroup notions. In Veech's paper on point distal flows, hyperspaces are used to associate an almost one-to-one homomorphism with a given homomorphism of metric minimal sets. In Chapter IV, a non-metric generalization of this construction is studied in detail using the new notion of a highly proximal homomorphism. An abstract characterization is obtained, involving only the abstract properties of homomorphisms. A strengthened version of the Veech Structure Theorem for point distal flows is proved. In Chapter V, the work in the earlier chapters is applied to the study of homomorphisms for which the almost periodic elements of the associated hyperspace are all finite. In the metric case, this is equivalent to having at least one fiber finite. Strong results are obtained by first assuming regularity, and then assuming that the relative proximal relation is closed as well.
Resumo:
There exist striking analogies in the behaviour of eigenvalues of Hermitian compact operators, singular values of compact operators and invariant factors of homomorphisms of modules over principal ideal domains, namely diagonalization theorems, interlacing inequalities and Courant-Fischer type formulae. Carlson and Sa [D. Carlson and E.M. Sa, Generalized minimax and interlacing inequalities, Linear Multilinear Algebra 15 (1984) pp. 77-103.] introduced an abstract structure, the s-space, where they proved unified versions of these theorems in the finite-dimensional case. We show that this unification can be done using modular lattices with Goldie dimension, which have a natural structure of s-space in the finite-dimensional case, and extend the unification to the countable-dimensional case.
Resumo:
Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.
Resumo:
Dans le développement logiciel en industrie, les documents de spécification jouent un rôle important pour la communication entre les analystes et les développeurs. Cependant, avec le temps, les changements de personel et les échéances toujours plus courtes, ces documents sont souvent obsolètes ou incohérents avec l'état effectif du système, i.e., son code source. Pourtant, il est nécessaire que les composants du système logiciel soient conservés à jour et cohérents avec leurs documents de spécifications pour faciliter leur développement et maintenance et, ainsi, pour en réduire les coûts. Maintenir la cohérence entre spécification et code source nécessite de pouvoir représenter les changements sur les uns et les autres et de pouvoir appliquer ces changements de manière cohérente et automatique. Nous proposons une solution permettant de décrire une représentation d'un logiciel ainsi qu'un formalisme mathématique permettant de décrire et de manipuler l'évolution des composants de ces représentations. Le formalisme est basé sur les triplets de Hoare pour représenter les transformations et sur la théorie des groupes et des homomorphismes de groupes pour manipuler ces transformations et permettrent leur application sur les différentes représentations du système. Nous illustrons notre formalisme sur deux représentations d'un système logiciel : PADL, une représentation architecturale de haut niveau (semblable à UML), et JCT, un arbre de syntaxe abstrait basé sur Java. Nous définissons également des transformations représentant l'évolution de ces représentations et la transposition permettant de reporter les transformations d'une représentation sur l'autre. Enfin, nous avons développé et décrivons brièvement une implémentation de notre illustration, un plugiciel pour l'IDE Eclipse détectant les transformations effectuées sur le code par les développeurs et un générateur de code pour l'intégration de nouvelles représentations dans l'implémentation.
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in LaTex
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in LaTex
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in LaTex