912 resultados para Homeostase redox
Resumo:
The genus Saccharum belongs to Poaceae family. Sugarcane has become important monocultures in Brazil due to their products: ethanol and sugar. The production may change between different regions from Brazil. This difference is related to soil, climatic conditions and temperature that promotes oxidative stress that may induce an early flowering. The aim of this work was to identify the effects of oxidative stress. In order to analyse this, sugarcane plants were submitted to oxidative stress using hydrogen peroxide. After this treatment, the oxidative stress were analyzed Then, the plant responses were analyzed under different approaches, using morphophysiological, biochemical and molecular tools. Thus, sugarcane plants were grown under controlled conditions and until two months they were subjected first to a hydroponics condition for 24 hours in order to acclimation. After this period, these plants were submitted to oxidative stresse using 0 mM, 10 mM, 20 mM and 30 mM hydrogen peroxide during 8 hours. The histomorphometric analysis allowed us to verify that both root and leaf tissues had a structural changes as it was observed by the increased in cell volume, lignin accumulation in cell walls. Besides, this observation suggested that there was a change in redox balance. Also, it was analyzed the activity of the SOD, CAT and APX enzymes. It was observed an increase in the SOD activity in roots and it was also observed a lipid peroxidation in leaves and roots. Then, in order to identify proteins that were differently expressed in this conditions it was used the proteomic tool either by bidimensional gel or by direct sequencing using the Q-TOF EZI. The results obtained with this approach identified more than 3.000 proteins with the score ranging from 100-5000 ions. Some of the proteins identified were: light Harvesting; oxygenevolving; Thioredoxin; Ftsh-like protein Pftf precusor; Luminal-binding protein; 2 cys peroxiredoxin e Lipoxygenase. All these proteins are involved in oxidative stress response, photsynthetic pathways, and some were classified hypothetical proteins and/or unknown (30% of total). Thus, our data allows us to propose that this treatment induced an oxidative stress and the plant in response changed its physiological process, it made changes in tissue, changed the redox response in order to survival to this new condition
Resumo:
World consumption of vegetable oils has increased in recent years because of its application in food, chemical, pharmaceutical and, more recently, energy industry. However, oilseeds, which these oils are extracted, have low viability, affecting the cultivation and productivity of these species. The aim of this study was to analyze the effect of aging on the coordination of catalase (CAT) and ascorbate peroxidase (APX) antioxidant systems in safflower and sunflower. . Therefore, seeds were subjected to accelerated aging for 3, 6 and 9 days and grown in moistened paper towel for 72 hours. Additionally, before accelerated aging, sunflower seeds were pretreated by osmopriming with 10 mM ascorbate (ASC) or 3 amino 1,2,4 triazol (3-AT), a specific inhibitor of CAT activitie. The method of artificial aging used was efficient in both species, because it caused a decrease in germination, seedling development and growth, especially in safflower. The aging caused inhibition of CAT activity for both species and to compensate for such inhibition , sunflower increased mRNA expression of this enzyme , while safflower mobilized over the activity of APX. Analysis of the expression of malate synthase and sugar content demonstrated that sunflower seeds consumes lipid reserves in quiescent state, while the safflower is more dependent on carbohydrate. Pretreatment with 3-AT inhibited CAT activity and stimulated the APX, though with ASC acted reverse on these systems. None of the treatments recovered the physiological decline aging. It is concluded that aging change the oilseeds antioxidant metabolism, despite interspecies variations in response to this process, the depletion of the CAT antioxidant system was common. Because of this we propose that the measurement of CAT activity can be used to identify aging seed lots.
Resumo:
As doenças cardiovasculares representam a principal causa de morte nos países ocidentais. Dentre essas doenças, a aterosclerose é que mais se destaca, sendo caracterizada pelo acúmulo de células musculares lisas vasculares (CMLV). O efeito patológico das CMLV em resposta a diferentes estímulos pode acarretar em disfunções nestas células. É notável que a aterosclerose ocorra principalmente em vasos sinuosos onde ocorre um forte turbilhonamento do fluxo sanguíneo, que pode acarretar em hemólise e, consequentemente, acúmulo de heme livre. Além disso, no processo de aterogênese as moléculas de adesão, principalmente integrinas, são de crucial importância durante a resposta de CMLV. Nesse trabalho nosso objetivo inicial foi avaliar o efeito do heme livre nas funções de CMLV, bem como os mecanismos moleculares por trás desses efeitos. Em uma segunda parte, investigamos o envolvimento da integrina α1ß1 no efeito da Angiotensina II (Ang II) em CMLV. Nós observamos que o heme livre é capaz de induzir a proliferação e migração de CMLV via espécies reativas de oxigênio (ERO) provenientes da NADPHoxidase (NADPHox). Adicionalmente vimos que o heme ativa vias de sinalização redox-sensíveis relacionadas à proliferação celular, como MAPKinases e o fator de transcrição NFκB. Também observamos que há uma ligação entre a NADPHox e o sistema heme oxigenase (HO), uma vez que o heme induz a expressão de HO-1 e o pré-tratamento das CMLV com inibidores de HO levam ao aumento tanto o efeito proliferação quanto a indução de ERO promovidas pelo heme. Além disso, vimos que o efeito contra-regulatório promovido pela HO ocorre devido as metabolites do heme: biliverdina, bilirrubina e monóxido de carbono. Por último, quando bloqueamos tanto a NADPHox quanto o sistema HO o heme não teve efeito algum na proliferação de CMLV. Em um segundo estudo, observamos que o efeito da Ang II sobre a migração de CMLV foi inibido quando as células foram pré-tratadas com o ligante da integrina α1ß1, a desintegrina Obtustatina. A seguir observamos que o efeito da Ang II na ativação de FAK e na colocalização actina-ILK é dependente da integrina α1ß1, que possivelmente ativa PKCα, uma vez que vimos que a produção de ERO induzida por Ang II foi inibida pela Obtustatina. Vimos que a indução da expressão de ILK por Ang II em CMLV é dependente da integrina α1ß1 e também observamos que a Obtustatina inibibiu o desacoplamento de ILK da FAK, uma vez que a Obtustatina bloqueou a fosforilação de FAK induzida por Ang II (processo crucial para o desacoplamento da ILK). Nós também observamos que a Ang II induz, via integrina α1ß1, a fosforilação de AKT e a diminuição da expressão de p21, provavelmente via ILK. Corroborando estes dados, nós mostramos que o pré-tratamento com Obtustatina induziu um estacionamento na fase G0 e diminuição da proliferação de CMLV tratadas com Ang II. Portanto, mostramos nesse trabalho que o heme livre induz a ativação de CML via NADPHox, que é elegantemente contra-regulado pelo sistema HO. Além disso, sugerimos que a integrina α1ß1 pode ser um importante alvo molecular para o desenvolvimento de intervenções mais efetivas para a aterosclerose.
Resumo:
The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrrolidine, piperidine, isoindoline, and azaphenalene) were determined experimentally by cyclic voltammetry in acetonitrile, and also via high-level ab initio molecular orbital calculations. It is shown that the potentials are influenced by the type of ring system, ring substituents and/or groups surrounding the radical moiety. For the pyrrolidine, piperidine, and isoindolines there is excellent agreement (mean absolute deviation of 0.05 V) between the calculated and experimental oxidation potentials; for the azaphenalenes, however, there is an extraordinary discrepancy (mean absolute deviation of 0.60 V), implying that their one-electron oxidation might involve additional processes not considered in the theoretical calculations. This recently developed azaphenalene class of nitroxide represents a new variant of a nitroxide ring fused to an aromatic system and details of the synthesis of five derivatives involving differing aryl substitution are also presented.
Resumo:
Cyclic nitroxide radicals represent promising alternatives to the iodine-based redox mediator commonly used in dye-sensitized solar cells (DSSCs). To date DSSCs with nitroxide-based redox mediators have achieved energy conversion efficiencies of just over 5 % but efficiencies of over 15 % might be achievable, given an appropriate mediator. The efficacy of the mediator depends upon two main factors: it must reversibly undergo one-electron oxidation and it must possess an oxidation potential in a range of 0.600-0.850 V (vs. a standard hydrogen electrode (SHE) in acetonitrile at 25 °C). Herein, we have examined the effect that structural modifications have on the value of the oxidation potential of cyclic nitroxides as well as the reversibility of the oxidation process. These included alterations to the N-containing skeleton (pyrrolidine, piperidine, isoindoline, azaphenalene, etc.), as well as the introduction of different substituents (alkyl-, methoxy-, amino-, carboxy-, etc.) to the ring. Standard oxidation potentials were calculated using high-level ab initio methodology that was demonstrated to be very accurate (with a mean absolute deviation from experimental values of only 16 mV). An optimal value of 1.45 for the electrostatic scaling factor for UAKS radii in acetonitrile solution was obtained. Established trends in the values of oxidation potentials were used to guide molecular design of stable nitroxides with desired E° ox and a number of compounds were suggested for potential use as enhanced redox mediators in DSSCs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue involving the ability of OA to both inhibit and promote ROS to achieve pathogenic success.
Resumo:
In this paper, we report the preparation and characterisation of nanometer-sized TiO2, CdO, and ZnO semiconductor particles trapped in zeolite NaY. Preparation of these particles was carried out via the traditional ion exchange method and subsequent calcination procedure. It was found that the smaller cations, i.e., Cd2+ and Zn2+ could be readily introduced into the SI′ and SII′ sites located in the sodalite cages, through ion exchange; while this is not the case for the larger Ti species, i.e., Ti monomer [TiO]2+ or dimer [Ti2O3]2+ which were predominantly dispersed on the external surface of zeolite NaY. The subsequent calcination procedure promoted these Ti species to migrate into the internal surface of the supercages. These semiconductor particles confined in NaY zeolite host exhibited a significant blue shift in the UV-VIS absorption spectra, in contrast to the respective bulk semiconductor materials, due to the quantum size effect (QSE). The particle sizes calculated from the UV-VIS optical absorption spectra using the effective mass approximation model are in good agreement with the atomic absorption data.
Resumo:
Electrochemical processes in mesoporous TiO2-Nafion thin films deposited on indium tin oxide (ITO) electrodes are inherently complex and affected by capacitance, Ohmic iR-drop, RC-time constant phenomena, and by potential and pH-dependent conductivity. In this study, large-amplitude sinusoidally modulated voltammetry (LASMV) is employed to provide access to almost purely Faradaic-based current data from second harmonic components, as well as capacitance and potential domain information from the fundamental harmonic for mesoporous TiO2-Nafion film electrodes. The LASMV response has been investigated with and without an immobilized one-electron redox system, ferrocenylmethyltrimethylammonium+. Results clearly demonstrate that the electron transfer associated with the immobilized ferrocene derivative follows two independent pathways i) electron hopping within the Nafion network and ii) conduction through the TiO2 backbone. The pH effect on the voltammetric response for the TiO2 reduction pathway (ii) can be clearly identified in the 2nd harmonic LASMV response with the diffusion controlled ferrocene response (i) acting as a pH independent reference. Application of second harmonic data derived from LASMV measurement, because of the minimal contribution from capacitance currents, may lead to reference-free pH sensing with systems like that found for ferrocene derivatives.
Resumo:
Abstract Ag-TiO2 and Au-TiO2 hybrid electrodes were designed by covalent attachment of TiO2 nanoparticles to Ag or Au electrodes via an organic linker. The optical and electronic properties of these systems were investigated using the cytochrome b5 (Cyt b5) domain of sulfite oxidase, exclusively attached to the TiO2 surface, as a Raman marker and model redox enzyme. Very strong SERR signals of Cyt b 5 were obtained for Ag-supported systems due to plasmonic field enhancement of Ag. Time-resolved surface-enhanced resonance Raman spectroscopic measurements yielded a remarkably fast electron transfer kinetic (k = 60 s -1) of Cyt b5 to Ag. A much lower Raman intensity was observed for Au-supported systems with undefined and slow redox behavior. We explain this phenomenon on the basis of the different potential of zero charge of the two metals that largely influence the electronic properties of the TiO2 island film. © 2013 American Chemical Society.
Resumo:
We investigated the relationship between mitochondrial biogenesis, cell signalling and antioxidant enzymes by depleting skeletal muscle glutathione with diethyl maleate (DEM) which resulted in a demonstrable increase in oxidative stress during exercise. Animals were divided into six groups: (1) sedentary control rats; (2) sedentary rats treated with DEM; (3) exercise control rats euthanized immediately after exercise; (4) exercise rats + DEM; (5) exercise control rats euthanized 4 h after exercise, and; (6) exercise rats + DEM euthanized 4 h after exercise. Exercising animals ran on the treadmill at a 10% gradient at 20 m/min for the first 30 min. The speed was then increased every 10 min by 1.6 m/min until exhaustion. There was a reduction in total glutathione in the skeletal muscle of DEM treated animals compared to the control animals (P<0.05). Within the control group, total glutathione was higher in the sedentary group compared to after exercise (P<0.05). DEM treatment also significantly increased oxidative stress, as measured by increased plasma F2-isoprostanes (P<0.05). Exercising animals given DEM showed a significantly greater increase in peroxisome proliferator activated receptor γ coactivator-1α(PGC-1α) mRNA compared to the control animals that were exercised (P<0.05). This study provides novel evidence that by reducing the endogenous antioxidant glutathione in skeletal muscle and inducing oxidative stress through exercise, PGC-1α gene expression was augmented. These findings further highlight the important role of exercise induced oxidative stress in the regulation of mitochondrial biogenesis.
Resumo:
The synthesis, electronic absorption and 1H NMR spectra of a suite of novel porphyrinoids derived from meso-bromoporphyrins by palladium-catalysed aminations using ethyl and tert-butylcarbazates are reported. Instead of the expected carbazate-substituted porphyrins, a facile oxidative dearomatisation of the porphyrin ring occurs in high yield, especially for the nickel(II) complexes, resulting in high yields of 5,15-diiminoporphodimethenes (DIPDs). The analogous zinc(II) and free base DIPDs were also characterised, the former by X-ray crystallography. The oxidation and reduction reactions of DIPDs and their precursor carbazate porphyrins were studied. Density Functional Theory (DFT) was used to calculate the optimised geometries and frontier molecular orbitals of DIPD Ni8c and bis(azocarboxylate) 19c, and Time Dependent DFT calculations allowed the prediction of electronic absorption spectra, whose characteristics corresponded well with those of the observed solution spectra. In the latter case, the calculated low-energy absorptions were unlike those of a typical porphyrin, due to the near-degeneracy of the highest filled frontier orbitals, and the wide energy separation between the unfilled orbitals. This feature was present in the observed spectrum.
Resumo:
The current study introduces a novel synthetic avenue for the preparation of profluorescent nitroxides via nitrile imine-mediated tetrazole-ene cycloaddition (NITEC). The photoinduced cycloaddition was performed under metal-free, mild conditions allowing the preparation of a library of the nitroxide functionalized pyrazolines and corresponding methoxyamines. High reaction rates and full conversion were observed, with the presence of the nitroxide having no significant impact on the cycloaddition performance. The formed products were investigated with respect to their photophysical properties in order to quantify their “switch on/off” behavior. The fluorescence quenching performance is strongly dependent on the distance between the chromophore and the free radical spin as demonstrated theoretically and experimentally. Highest levels of fluorescence quenching were achieved for pyrazolines with the nitroxide directly fused to the chromophore. Importantly, the pyrazoline profluorescent nitroxides were shown to efficiently act as sensors for redox/radical processes.
Resumo:
Pt ions-CeO2 interaction in Ce1-xPtxO2-delta (x=0.02) has been studied for the first time by electrochemical method combined with x-ray diffraction and x-ray photoelectron spectroscopy. Working electrodes made of CeO2 and Ce0.98Pt0.02O2-delta mixed with 30% carbon are treated electrochemically between 0.0-1.2 V in potentiostatic (chronoamperometry) and potentiodynamic (cyclic voltametry) mode with reference to saturated calomel electrode. Reversible oxidation of Pt-0 to Pt2+ and Pt4+ state due to the applied positive potential is coupled to simultaneous reversible reduction of Ce4+ to Ce3+ state. CeO2 reduces to CeO2-y (y=0.35) after applying 1.2 V, which is not reversible; Ce0.98Pt0.02O2-delta reaches a steady state with Pt2+:Pt4+ in the ratio of 0.60:0.40 and Ce4+:Ce3+ in the ratio of 0.55:0.45 giving a composition Ce0.98Pt0.02O1.74 at 1.2 V, which is reversible. Composition of Pt ion substituted compound is reversible between Ce0.98Pt0.02O1.95 to Ce0.98Pt0.02O1.74 within the potential range of 0.0-1.2 V. Thus, Ce0.98Pt0.02O2-delta forms a stable electrode for oxidation of H2O to O-2 unlike CeO2. A linear relation between oxidation of Pt2+ to Pt4+ with simultaneous reduction in Ce4+ to Ce3+ is observed demonstrating Pt-CeO2 metal support interaction is due to reversible Pt-0/Pt2+/Pt4+ interaction with Ce4+/Ce3+ redox couple.