5 resultados para HomePlug
Resumo:
Actualmente a área da domótica (automação de casas e edifícios) encontra-se em franca expansão, com principal relevância nos países mais desenvolvidos, com um crescimento de mercado de mais de 10% ao ano. Existem inúmeras razoes para a crescente implantação da domótica em edifícios, entre as quais a maior eficiência energética, o aumento da segurança e a redução do custo de aquisição das tecnologias. No que diz respeito as habitações particulares, acrescenta-se essencialmente o aumento do conforto devido ao grau de automação trazido pela domótica. Apesar da domótica não ser uma área cientifico-tecnológica recente, a rápida evolução das tecnologias associadas, nomeadamente a nível das redes de comunicação com e sem fios, foi uma das razoes fundamentais para a elaboração desta Tese. Acresce o facto de o candidato estar actualmente envolvido profissionalmente na área, pelo qual esta Tese assume uma particular importância. Realizou-se um estudo comparativo das tecnologias de domótica mais relevantes, escolhidas quer pelas suas características técnicas quer pela sua implantação de mercado e potencial futuro - KNX/EIB, LonWorks, HomePlug, ZigBee e Z-Wave. Destas, comprovou-se que as duas primeiras são aquelas que, actualmente, tem maior adequabilidade para serem aplicadas em projectos de domótica. Foi por isso efectuado um estudo mais elaborado das tecnologias LonWorks e KNX/EIB, incluindo a forma pratica de instalação/programação, a elaboração de dois demonstradores e de dois projectos (de acordo com um caderno de encargos real), usando as duas tecnologias. Concluiu-se que a tecnologia LonWorks apresenta vantagens no que respeita a escalabilidade (dimensão) dos sistemas. Em termos futuros, prevê-se a necessidade da interoperabilidade entre os nos/redes cablados (tradicionais) com nos/redes sem fio, seguindo a tendência para os ambientes inteligentes (“ambient intelligence/assisted living”, “smart spaces”, “ubiquitous computing).
Resumo:
Sähkömoottorin jatkuva-aikainen kunnonvalvonta vaatii tiedonsiirtoa moottorilta ylemmälle tietojärjestelmätasolle, kuten taajuusmuuttajalle. Uusien kaapeleiden asennus on työlästä ja kallista. Moottorin ja taajuusmuuttajan välillä on kuitenkin aina kaapeli, jota käytetään moottorin tehonsyöttöön. Tätä kaapelia on mahdollista käyttää myös tiedonsiirtokanavana. Tässä diplomityössä käsitellään ja tutkitaan sähköverkkotiedonsiirtomenetelmää, jonka avulla voidaan muodostaa Ethernet-yhteys moottorilta taajuusmuuttajalle tai toisinpäin. Työssä kehitetään simulointimalli tiedonsiirtokanavan taajuusriippuvan vaimennuksen simuloimiseen. Lisäksi kehitetään kytkentärajapinta, joka mahdollistaa tiedonsiirron kolmivaiheisessa taajuusmuuttajan syöttämässä moottorikaapelissa. Työssä suunnitellaan ja toteutetaan tiedonsiirtoa varten pilot-laitteisto, jolla tehdään laboratoriotestit. Laboratoriotesteillä varmistetaan menetelmän soveltuvuus. Laboratoriotestien avulla etsitään myös reunaehdot tiedonsiirron toiminnalle ja tiedonsiirtonopeuteen vaikuttavia tekijöitä taajuusmuuttajakäytössä. Lisäksi tarkastellaan menetelmän aiheuttamaa viivettä, joka on tärkeäsäätösovellusten kannalta. Lopuksi arvioidaan menetelmän soveltuvuus käytännön sovelluksiin.
Resumo:
Data transmission between an electric motor and a frequency converter is required in variablespeed electric drives because of sensors installed at the motor. Sensor information can be used for various useful applications to improve the system reliability and its properties. Traditionally, the communication medium is implemented by an additional cabling. However, the costs of the traditional method may be an obstacle to the wider application of data transmission between a motor and a frequency converter. In any case, a power cable is always installed between a motor and a frequency converter for power supply, and hence it may be applied as a communication medium for sensor level data. This thesis considers power line communication (PLC) in inverter-fed motor power cables. The motor cable is studied as a communication channel in the frequency band of 100 kHz−30 MHz. The communication channel and noise characteristics are described. All the individual components included in a variable-speed electric drive are presented in detail. A channel model is developed, and it is verified by measurements. A theoretical channel information capacity analysis is carried out to estimate the opportunities of a communication medium. Suitable communication and forward error correction (FEC) methods are suggested. A general method to implement a broadband and Ethernet-based communication medium between a motor and a frequency converter is proposed. A coupling interface is also developed that allows to install the communication device safely to a three-phase inverter-fed motor power cable. Practical tests are carried out, and the results are analyzed. Possible applications for the proposed method are presented. A speed feedback motor control application is verified in detail by simulations and laboratory tests because of restrictions for the delay in the feedback loop caused by PLC. Other possible applications are discussed at a more general level.
Resumo:
Communications play a key role in modern smart grids. New functionalities that make the grids ‘smart’ require the communication network to function properly. Data transmission between intelligent electric devices (IEDs) in the rectifier and the customer-end inverters (CEIs) used for power conversion is also required in the smart grid concept of the low-voltage direct current (LVDC) distribution network. Smart grid applications, such as smart metering, demand side management (DSM), and grid protection applied with communications are all installed in the LVDC system. Thus, besides remote connection to the databases of the grid operators, a local communication network in the LVDC network is needed. One solution applied to implement the communication medium in power distribution grids is power line communication (PLC). There are power cables in the distribution grids, and hence, they may be applied as a communication channel for the distribution-level data. This doctoral thesis proposes an IP-based high-frequency (HF) band PLC data transmission concept for the LVDC network. A general method to implement the Ethernet-based PLC concept between the public distribution rectifier and the customerend inverters in the LVDC grid is introduced. Low-voltage cables are studied as the communication channel in the frequency band of 100 kHz–30 MHz. The communication channel characteristics and the noise in the channel are described. All individual components in the channel are presented in detail, and a channel model, comprising models for each channel component is developed and verified by measurements. The channel noise is also studied by measurements. Theoretical signalto- noise ratio (SNR) and channel capacity analyses and practical data transmission tests are carried out to evaluate the applicability of the PLC concept against the requirements set by the smart grid applications in the LVDC system. The main results concerning the applicability of the PLC concept and its limitations are presented, and suggestion for future research proposed.