755 resultados para Home automation -- TFM
Resumo:
With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention. Taking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks.
Resumo:
La nascita della Internet of Things, come conseguenza dell'aumento della capacità di calcolo e adozione di connettività in nuovi dispositivi, ha permesso l'apporto di nuove tecnologie negli oggetti di uso quotidiano e ha cambiano il modo in cui le persone utilizzano e interagiscono con questi oggetti. La Home Automation, da sempre orientata al controllo locale e remoto di apparecchiature domestiche, non ha mai raggiunto una grande diffusione per colpa del costo elevato, una controproducente chiusura rispetto ad altri sistemi e una certa difficoltà nella sua programmazione da parte dei possibili utenti. Le possibilità offerte dalla IoT e i limiti della Home Automation hanno suggerito lo sviluppo di un sistema in grado si superare queste limitazioni sfruttando le tecnologie più adatte a integrare Smart Object e sistemi, gli uni con gli altri, in maniera semplice e rapida. Il progetto e lo sviluppo di una soluzione reale di Home Automation basata su un impianto domotico commerciale ha permesso di dimostrare come strumenti opensource e tecnologie orientate alla IoT consentano, se opportunamente integrate, di migliorare sia la fruibilità dei sistemi domotici, attraverso la maggiore apertura verso altri sistemi, sia l'interazione con l'utente che sarà in grado di creare in modo semplice e diretto scenari di utilizzo sempre nuovi.
Resumo:
Facing the EU energy efficiency and legal scenarios related to buildings (2010/31 EU directive), new sustainable advanced concepts for envelopes are required. These innovative designs must be able to offer an elevated level of energy efficiency based on a high performance architecture. According to this, smart glazings, and particularly active water-flow glazings, represent a promising alternative to other solar control glazings, since they can reduce the building energy demand avoiding well known drawbacks as high cost, glare problems and high response time that affect to other smart glazings. This kind of glazing, as any other active one, needs to be operated by a control system. In order to operate a water-flow based window, a new controller based on an inexpensive microcontroller board has been developed
Resumo:
Current solutions to the interoperability problem in Home Automation systems are based on a priori agreements where protocols are standardized and later integrated through specific gateways. In this regards, spontaneous interoperability, or the ability to integrate new devices into the system with minimum planning in advance, is still considered a major challenge that requires new models of connectivity. In this paper we present an ontology-driven communication architecture whose main contribution is that it facilitates spontaneous interoperability at system model level by means of semantic integration. The architecture has been validated through a prototype and the main challenges for achieving complete spontaneous interoperability are also evaluated.
Resumo:
El objeto de este proyecto es crear un diseño tipo de instalación domótica para un hotel de hasta 100 habitaciones, basada en componentes OpenDomo y fundamentalmente en el controlador ODControl. El modelo de instalación propuesto está orientado principalmente al ahorro energético y, por tanto, al control de los principales elementos que tienen impacto sobre el ahorro, esto es: la iluminación y la climatización del hotel.
Resumo:
In recent years, ZigBee has been proven to be an excellent solution to create scalable and flexible home automation networks. In a home automation network, consumer devices typically collect data from a home monitoring environment and then transmit the data to an end user through multi-hop communication without the need for any human intervention. However, due to the presence of typical obstacles in a home environment, error-free reception may not be possible, particularly for power constrained devices. A mobile sink based data transmission scheme can be one solution but obstacles create significant complexities for the sink movement path determination process. Therefore, an obstacle avoidance data routing scheme is of vital importance to the design of an efficient home automation system. This paper presents a mobile sink based obstacle avoidance routing scheme for a home monitoring system. The mobile sink collects data by traversing through the obstacle avoidance path. Through ZigBee based hardware implementation and verification, the proposed scheme successfully transmits data through the obstacle avoidance path to improve network performance in terms of life span, energy consumption and reliability. The application of this work can be applied to a wide range of intelligent pervasive consumer products and services including robotic vacuum cleaners and personal security robots1.
DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL SMART HOME SCHEDULING USING FPGA
Resumo:
With the development and capabilities of the Smart Home system, people today are entering an era in which household appliances are no longer just controlled by people, but also operated by a Smart System. This results in a more efficient, convenient, comfortable, and environmentally friendly living environment. A critical part of the Smart Home system is Home Automation, which means that there is a Micro-Controller Unit (MCU) to control all the household appliances and schedule their operating times. This reduces electricity bills by shifting amounts of power consumption from the on-peak hour consumption to the off-peak hour consumption, in terms of different “hour price”. In this paper, we propose an algorithm for scheduling multi-user power consumption and implement it on an FPGA board, using it as the MCU. This algorithm for discrete power level tasks scheduling is based on dynamic programming, which could find a scheduling solution close to the optimal one. We chose FPGA as our system’s controller because FPGA has low complexity, parallel processing capability, a large amount of I/O interface for further development and is programmable on both software and hardware. In conclusion, it costs little time running on FPGA board and the solution obtained is good enough for the consumers.
Resumo:
Automation technologies are widely acclaimed to have the potential to significantly reduce energy consumption and energy-related costs in buildings. However, despite the abundance of commercially available technologies, automation in domestic environments keep on meeting commercial failures. The main reason for this is the development process that is used to build the automation applications, which tend to focus more on technical aspects rather than on the needs and limitations of the users. An instance of this problem is the complex and poorly designed home automation front-ends that deter customers from investing in a home automation product. On the other hand, developing a usable and interactive interface is a complicated task for developers due to the multidisciplinary challenges that need to be identified and solved. In this context, the current research work investigates the different design problems associated with developing a home automation interface as well as the existing design solutions that are applied to these problems. The Qualitative Data Analysis approach was used for collecting data from research papers and the open coding process was used to cluster the findings. From the analysis of the data collected, requirements for designing the interface were derived. A home energy management functionality for a Web-based home automation front-end was developed as a proof-of-concept and a user evaluation was used to assess the usability of the interface. The results of the evaluation showed that this holistic approach to designing interfaces improved its usability which increases the chances of its commercial success.
Resumo:
Esta dissertação apresenta o trabalho realizado no âmbito da unidade curricular de Tese / Dissertação (TEDI) do Mestrado em Engenharia Eletrotécnica e de Computadores – Especialização em Automação e Sistemas em parceria com a empresa Live Simply, uma empresa de domótica que decidiu apostar na inovação e no desenvolvimento de serviços e produtos de valor acrescentado para consolidar a sua posição no mercado. Neste contexto, foram identificadas como mais-valias para a Live Simply a conceção, por um lado, de uma ferramenta de apoio técnico de integração e simplificação das fases de projeto, configuração e gestão de instalações domóticas e, por outro lado, de uma interface com a instalação para o cliente consultar e alterar, em tempo real, o estado dos atuadores. Depois de analisadas as tecnologias disponíveis, selecionaram-se as soluções a adotar (linguagens de programação, servidores de base de dados e ambientes de desenvolvimento), definiu-se a arquitetura do sistema, detalhando-se os módulos de projeto, configuração e gestão de instalações, a estrutura da base de dados assim como o hardware de controlo da instalação. De seguida, procedeu-se ao desenvolvimento dos módulos de software e à configuração e programação do módulo de hardware. Por último, procedeu-se a um conjunto exaustivo de testes aos diferentes módulos que demonstraram o correto funcionamento da ferramenta e a adequação das tecnologias empregues. A ferramenta de apoio técnico realizada integra as fases do projeto, configuração e gestão de instalações domóticas, permitindo melhorar o desempenho dos técnicos e a resposta aos clientes. A interface oferecida ao dono da instalação é uma interface Web de aspeto amigável e fácil utilização que permite consultar e modificar em tempo real o estado da instalação.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Perfil Energia, Refrigeração e Climatização
Resumo:
Wireless Sensor Networks (WSNs) have been attracting increasing interests in the development of a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in Wireless Sensor Networks differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols and mechanisms. In this Technical Report, we present a survey on communication protocols for WSNs with a particular emphasis on the lower protocol layers. We give a particular focus to the MAC (Medium Access Control) sub-layer, since it has a prominent influence on some relevant requirements that must be satisfied by WSN protocols, such as energy consumption, time performance and scalability. We overview some relevant MAC protocol solutions and discuss how they tackle the trade-off between the referred requirements.
Resumo:
Wireless Sensor Networks (WSNs) are increasingly used in various application domains like home-automation, agriculture, industries and infrastructure monitoring. As applications tend to leverage larger geographical deployments of sensor networks, the availability of an intuitive and user friendly programming abstraction becomes a crucial factor in enabling faster and more efficient development, and reprogramming of applications. We propose a programming pattern named sMapReduce, inspired by the Google MapReduce framework, for mapping application behaviors on to a sensor network and enabling complex data aggregation. The proposed pattern requires a user to create a network-level application in two functions: sMap and Reduce, in order to abstract away from the low-level details without sacrificing the control to develop complex logic. Such a two-fold division of programming logic is a natural-fit to typical sensor networking operation which makes sensing and topological modalities accessible to the user.
Resumo:
Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Área de Especialização de Telecomunicações