7 resultados para Homéobox
Resumo:
Chez les humains, un large pourcentage de leucémies myéloïdes et lymphoïdes exprime des gènes Homéobox (Hox) de façon aberrante, principalement ceux du groupe des gènes Hoxa. Cette dérégulation de l’expression des gènes Hox peut provenir directement des translocations impliquant des gènes Hox ou indirectement par d’autres protéines ayant un potentiel oncogénique. De plus, plusieurs études indiquent que les gènes Hox jouent un rôle essentiel dans l'initiation de diverses leucémies. Comprendre le fonctionnement des gènes Hox dans l'hématopoïèse normale est donc une condition préalable pour élucider leurs fonctions dans les leucémies, ce qui pourrait éventuellement conduire à l’élaboration de nouveaux traitements contre cette maladie. Plusieurs études ont tenté d’élucider les rôles exacts des gènes Hox dans l'hématopoïèse via l’utilisation de souris mutantes pour un seul gène Hox. Or, en raison du phénomène de redondance fonctionnelle chez cette famille de gènes, ces études ont été peu concluantes. Il a été précédemment démontré que dans une population de cellules enrichies en cellules souches hématopoïétiques (CSH), les gènes du cluster Hoxa sont plus exprimés que les gènes Hox des autres clusters. Aussi, il a été établi que les gènes du cluster Hoxb sont non essentiels à l’hématopoïèse définitive puisque les CSH mutantes pour les gènes Hoxb1-9 conservent leur potentiel de reconstitution à long terme. En nous basant sur ces données, nous avons émis l'hypothèse suivante : les gènes Hoxa sont essentiels pour l'hématopoïèse normale adulte. Pour tester notre hypothèse, nous avons choisi d’utiliser un modèle de souris comportant une délétion pour l’ensemble des gènes Hoxa. Dans le cadre de cette recherche, nous avons démontré que les CSH, les progéniteurs primitifs et les progéniteurs des cellules B sont particulièrement sensibles au niveau d'expression des gènes Hoxa. Plus particulièrement, une baisse de la survie et une différenciation prématurée semblent être à l’origine de la perte des CSH Hoxa-/- dans la moelle osseuse. L’analyse du profil transcriptionnel des CSH par séquençage de l'ARN a révélé que les gènes Hoxa sont capables de réguler un vaste réseau de gènes impliqués dans divers processus biologiques. En effet, les gènes Hoxa régulent l’expression de plusieurs gènes codant pour des récepteurs de cytokine. De plus, les gènes Hoxa influencent l’expression de gènes jouant une fonction dans l’architecture de la niche hématopoïétique. L’expression de plusieurs molécules d’adhésion est aussi modulée par les gènes Hoxa, ce qui peut affecter la relation des CSH avec la niche hématopoïétique. L’ensemble de ces résultats démontre que les gènes Hoxa sont d'importants régulateurs de l'hématopoïèse adulte puisqu’ils sont nécessaires au maintien des CSH et des progéniteurs grâce à leurs effets sur plusieurs processus biologiques comme l'apoptose, le cycle cellulaire et les interactions avec la niche.
Resumo:
FLORICAULA (FLO) und KNOTTED1-like Homöobox (KNOX)-Gene übernehmen neben ihren konservierten Funktionen in der Achsenentwicklung in verschiedenen Eudikotylen eine Funktion in der Fiederblattentwicklung. Zur Klärung der Frage nach dem ursprünglichen Regulationsweg der Fiederblattentwicklung in Hinblick auf FLO und KNOX-Gene innerhalb der Eudikotylen wurde hier die Bedeutung dieser Gene für die Fiederblattentwicklung von Eschscholzia californica als Modell für die Ranunculales, die Schwestergruppe aller anderen Eudikotylen untersucht. Es wurde ein Protokoll zur Erzeugung von somatischen Embryonen aus unreifen Samen entwickelt. Wege zur Herstellung von Mutanten durch Agrobacterium-vermittelte Transformation werden vorgeschlagen. Die Bedeutung von Auxin für die Blattentwicklung und die Untersuchung der Interaktion von ESCHSCHOLZIA CALIFORNICA FLORICAULA (EcFLO) und des KNOX- Gens ESCHSCHOLZIA CALIFORNICA SHOOT MERISTEMLESS (EcSTM) mit Auxin wurde durch Hemmung des Auxintransports untersucht. Trotz gravierender Störungen in der Blattpositionierung und -morphologie konnten Expressionsänderungen beider Gene nicht nachgewiesen werden. Ein Funktionsverlust von EcFLO und KNOX-Genen in E. californica wurden mittels Virus induziertem Gen Silencing (VIGS) erzeugt. VIGS von EcFLO rief keinen Phänotypen hervor. VIGS des KNOX-Gens EcSTM erzeugte dagegen in einigen Pflanzen eine Reduktion der Fiederzahl. Auch molekularbiologisch konnte das Silencing von EcSTM, nicht aber das Silencing von EcFLO nachgewiesen werden. Die Ergebnisse belegen die Notwendigkeit des ungestörten Auxintransports für die Blattentwicklung von E. californica und machen die Beteiligung des KNOX-Gens EcSTM an der Blattentwicklung wahrscheinlich. Die Beteiligung von EcFLO an der Fiederbildung konnte nicht nachgewiesen werden.
Resumo:
In Vertebraten und Insekten ist während der frühen Entwicklung des zentralen Nervensystems (ZNS), welches sich aus dem Gehirn und dem ventralen Nervensystem (VNS) zusammensetzt, die Unterteilung des Neuroektoderms (NE) in diskrete Genexpressions-Domänen entscheidend für die korrekte Spezifizierung neuraler Stammzellen. In Drosophila wird die Identität dieser Stammzellen (Neuroblasten, NB) festgelegt durch die positionellen Informationen, welche von den Produkten früher Musterbildungsgene bereitgestellt werden und das Neuroektoderm in anteroposteriorer (AP) und dorsoventraler (DV) Achse unterteilen. Die molekulargenetischen Mechanismen, welche der DV-Regionalisierung zugrunde liegen, wurden ausführlich im embryonalen VNS untersucht, sind für das Gehirn jedoch weitestgehend unverstanden. rnIm Rahmen dieser Arbeit wurden neue Erkenntnisse bezüglich der genetischen Mechanismen gewonnen, welche die frühembryonale Anlage des Gehirns in DV-Achse unterteilen. So konnte gezeigt werden, dass das cephale Lückengen empty spiracles (ems), das Segmentpolaritätsgen engrailed (en), sowie der „Epidermal growth factor receptor“ (EGFR) und das Gen Nk6 homeobox (Nkx6) für Faktoren codieren, die als zentrale Regulatoren die DV Musterbildung in der Gehirnanlage kontrollieren. Diese Faktoren interagieren zusammen mit den ebenso evolutionär konservierten Homöobox-Genen ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) und muscle segment homeobox (msh) in einem komplexen, regulatorischen DV-Netzwerk. Die im Trito (TC)- und Deutocerebrum (DC) entschlüsselten genetischen Interaktionen basieren überwiegend auf wechselseitiger Repression. Dementsprechend sorgen 1) Vnd und Ems durch gegenseitige Repression für eine frühe DV-Unterteilung des NE, und 2) wechselseitige Repression zwischen Nkx6 und Msh, als auch zwischen Ind und Msh für die Aufrechterhaltung der Grenze zwischen intermediärem und dorsalem NE. 3) Sowohl Ind als auch Msh sind in der Lage, die Expression von vnd zu inhibieren. Ferner konnte gezeigt werden, dass Vnd durch Repression von Msh als positiver Regulator von Nkx6 fungiert. Überdies beeinflusst Vnd die Expression von ind in segment-spezifischer Art und Weise: Vnd reprimiert ind-Expression im TC, sorgt jedoch für eine positive Regulation von ind im DC durch Repression von Msh. Auch der EGFR-Signalweg ist an der frühen DV-Regionalisierung des Gehirns beteiligt, indem er durch positive Regulation der msh-Repressoren Vnd, Ind und Nkx6 dazu beiträgt, dass die Expression von msh auf dorsales NE beschränkt bleibt. Ferner stellte sich heraus, dass das AP-Musterbildungsgen ems die Expression der DV-Gene kontrolliert und umgekehrt: Ems ist für die Aktivierung von Nkx6, ind und msh in TC und DC erforderlich ist, während Nkx6 und Ind zu einem späteren Zeitpunkt benötigt werden, um ems im intermediären DC gemeinsam zu reprimieren. Überdies konnte gezeigt werden, dass das Segmentpolaritätsgen en Aspekte der Expression von vnd, ind und msh in segment-spezifischer Art und Weise reguliert. En reprimiert ind und msh, hält jedoch vnd-Expression im DC aufrecht; im TC wird En benötigt, um die Expression von Msh herunter zu regulieren und somit die Aktivierung von ind dort zu ermöglichen.rnrnZusammengenommen zeigen diese Ergebnisse, dass AP Musterbildungsfaktoren in umfangreichen Maß die Expression der DV Gene im Gehirn (und VNS) kontrollieren. Ferner deuten diese Daten darauf hin, dass sich das „Konzept der ventralen Dominanz“, welches für die DV-Musterbildung im VNS postuliert wurde, nicht auf das genregulatorische Netzwerk im Gehirn übertragen lässt, da Interaktionen zwischen den beteiligten Faktoren hauptsächlich auf wechselseitiger (und nicht einseitiger) Repression basieren. Zudem scheint das Konzept der ventralen Dominanz auch für das VNS nicht uneingeschränkt zu gelten, da in dieser Arbeit u.a. gezeigt werden konnte, dass dorsal exprimiertes Msh in der Lage ist, intermediäres ind zu reprimieren. Interessanterweise ist gegenseitige Repression von Homöodomänen-Proteinen im sich entwickelnden Neuralrohr von Vertebraten weit verbreitet und darüberhinaus essenziell für den Aufbau diskreter DV-Vorläuferdomänen, und weist insofern eine große Ähnlichkeit zu den in dieser Arbeit beschriebenen DV-Musterbildungsvorgängen im frühembryonalen Fliegengehirn auf.rn
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.