24 resultados para Holografia
Resumo:
Aquest projecte es basa, en el disseny i construcció d’una aplicació directa de l’holografia de microones. Està compost per el disseny d’un sistema el qual és capaç de mesurar la potència que arriba a un sistema d’antenes receptores al travessar un obstacle i posteriorment, mitjançant una sèrie de passos que caracteritzen l’holografia, el que permet és, recuperar una imatge virtual de l’obstacle en qüestió el qual s’ha volgut holografiar. Aquest sistema s’ha elaborat mitjançant un motor rotatori i posteriorment lineal per fer l’escaneig de potència. Primerament el que s’ha dut a terme és una simulació de com el sistema es comportaria en un entorn ideal i posteriorment, s’ha dut a la realitat amb un sistema el qual ens ha permès fer una comparació amb els resultats obtinguts en la simulació. Finalment es mostren els resultats sobre la seva viabilitat.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
Methods for generating beams with arbitrary polarization based on the use of liquid crystal displays have recently attracted interest from a wide range of sources. In this paper we present a technique for generating beams with arbitrary polarization and shape distributions at a given plane using a Mach-Zehnder setup. The transverse components of the incident beam are processed independently by means of spatial light modulators placed in each path of the interferometer. The modulators display computer generated holograms designed to dynamically encode any amplitude value and polarization state for each point of the wavefront in a given plane. The steps required to design such beams are described in detail. Several beams performing different polarization and intensity landscapes have been experimentally implemented. The results obtained demonstrate the capability of the proposed technique to tailor the amplitude and polarization of the beam simultaneously.
Resumo:
We propose a method to display full complex Fresnel holograms by adding the information displayed on two analogue ferroelectric liquid crystal spatial light modulators. One of them works in real-only configuration and the other in imaginary-only mode. The Fresnel holograms are computed by backpropagating an object at a selected distance with the Fresnel transform. Then, displaying the real and imaginary parts on each panel, the object is reconstructed at that distance from the modulators by simple propagation of light. We present simulation results taking into account the specifications of the modulators as well as optical results. We have also studied the quality of reconstructions using only real, imaginary, amplitude or phase information. Although the real and imaginary reconstructions look acceptable for certain distances, full complex reconstruction is always better and is required when arbitrary distances are used.
Resumo:
In this study, we present a method designed to generate dynamic holograms in holographic optical tweezers. The approach combines our random mask encoding method with iterative high-efficiency algorithms. This hybrid method can be used to dynamically modify precalculated holograms, giving them new functionalities¿temporarily or permanently¿with a low computational cost. This allows the easy addition or removal of a single trap or the independent control of groups of traps for manipulating a variety of rigid structures in real time.
Resumo:
En este trabajo se presentan distintas alternativas para obtener la modulación compleja completa de frentes de onda mediante la suma de la modulación introducida por dos pantallas de cristal líquido. Para los distintos métodos se presentan resultados simulados de reconstrucciones de hologramas de Fresnel digitales.
Resumo:
We study the gravitational dual of a high-energy collision in a confining gauge theory. We consider a linearized approach in which two point particles traveling in an AdS-soliton background suddenly collide to form an object at rest (presumably a black hole for large enough center-of-mass energies). The resulting radiation exhibits the features expected in a theory with a mass gap: late-time power law tails of the form t −3/2, the failure of Huygens" principle and distortion of the wave pattern as it propagates. The energy spectrum is exponentially suppressed for frequencies smaller than the gauge theory mass gap. Consequently, we observe no memory effect in the gravitational waveforms. At larger frequencies the spectrum has an upward-stairway structure, which corresponds to the excitation of the tower of massive states in the confining gauge theory. We discuss the importance of phenomenological cutoffs to regularize the divergent spectrum, and the aspects of the full non-linear collision that are expected to be captured by our approach.
Resumo:
The potential of digital holography for complex manipulation of micron-sized particles with optical tweezers has been clearly demonstrated. By contrast, its use in quantitative experiments has been rather limited, partly due to fluctuations introduced by the spatial light modulator (SLM) that displays the kinoforms. This is an important issue when high temporal or spatial stability is a concern. We have investigated the performance of both an analog-addressed and a digitally-addressed SLM, measuring the phase fluctuations of the modulated beam and evaluating the resulting positional stability of a holographic trap. We show that, despite imparting a more unstable modulation to the wavefront, our digitally-addressed SLM generates optical traps in the sample plane stable enough for most applications. We further show that traps produced by the analog-addressed SLM exhibit a superior pointing stability, better than 1 nm, which is comparable to that of non-holographic tweezers. These results suggest a means to implement precision force measurement experiments with holographic optical tweezers (HOTs).
Resumo:
A major problem with holographic optical tweezers (HOTs) is their incompatibility with laser-based position detection methods, such as back-focal-plane interferometry (BFPI). The alternatives generally used with HOTs, like high-speed video tracking, do not offer the same spatial and temporal bandwidths. This has limited the use of this technique in precise quantitative experiments. In this paper, we present an optical trap design that combines digital holography and back-focal-plane displacement detection. We show that, with a particularly simple setup, it is possible to generate a set of multiple holographic traps and an additional static non-holographic trap with orthogonal polarizations and that they can be, therefore, easily separated for measuring positions and forces with the high positional and temporal resolutions of laser-based detection. We prove that measurements from both polarizations contain less than 1% crosstalk and that traps in our setup are harmonic within the typical range. We further tested the instrument in a DNA stretching experiment and we discuss an interesting property of this configuration: the small drift of the differential signal between traps.
Resumo:
We recently showed that a heavy quark moving sufficiently fast through a quark-gluon plasma may lose energy by Cherenkov-radiating mesons [1]. Here we review our previous holographic calculation of the energy loss in N=4 Super Yang-Mills and extend it to longitudinal vector mesons and scalar mesons. We also discuss phenomenological implications for heavy-ion collision experiments. Although the Cherenkov energy loss is an O(1/Nc) effect, a ballpark estimate yields a value of dE/dx for Nc=3 which is comparable to that of other mechanisms.
Resumo:
We recently showed that a heavy quark moving sufficiently fast through a quark-gluon plasma may lose energy by Cherenkov-radiating mesons [1]. Here we review our previous holographic calculation of the energy loss in N=4 Super Yang-Mills and extend it to longitudinal vector mesons and scalar mesons. We also discuss phenomenological implications for heavy-ion collision experiments. Although the Cherenkov energy loss is an O(1/Nc) effect, a ballpark estimate yields a value of dE/dx for Nc=3 which is comparable to that of other mechanisms.
Resumo:
The holographic isotropization of a highly anisotropic, homogeneous, strongly coupled, non-Abelian plasma was simplified in ref. [1] by linearizing Einstein"s equations around the final, equilibrium state. This approximation reproduces the expectation value of the boundary stress tensor with a 20% accuracy. Here we elaborate on these results and extend them to observables that are directly sensitive to the bulk interior, focusing for simplicity on the entropy production on the event horizon. We also consider next-to-leading-order corrections and show that the leading terms alone provide a better description of the isotropization process for the states that are furthest from equilibrium.
Resumo:
We numerically simulate planar shock wave collisions in anti-de Sitter space as a model for heavy ion collisions of large nuclei. We uncover a crossover between two different dynamical regimes as a function of the collision energy. At low energies the shocks first stop and then explode in a manner approximately described by hydrodynamics, in close similarity with the Landau model. At high energies the receding fragments move outwards at the speed of light, with a region of negative energy density and negative longitudinal pressure trailing behind them. The rapidity distribution of the energy density at late times around midrapidity is not approximately boost invariant but Gaussian, albeit with a width that increases with the collision energy.