984 resultados para Holocentric chromosomes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitotic and meiotic chromosomes of Tityus bahiensis were investigated using light (LM) and transmission electron microscopy (TEM) to determine the chromosomal characteristics and disclose the mechanisms responsible for intraspecific variability in chromosome number and for the presence of complex chromosome association during meiosis. This species is endemic to Brazilian fauna and belongs to the family Buthidae, which is considered phylogenetically basal within the order Scorpiones. In the sample examined, four sympatric and distinct diploid numbers were observed: 2n = 5, 2n = 6, 2n = 9, and 2 = 10. The origin of this remarkable chromosome variability was attributed to chromosome fissions and/or fusions, considering that the decrease in chromosome number was concomitant with the increase in chromosome size and vice versa. The LM and TEM analyses showed the presence of chromosomes without localised centromere, the lack of chiasmata and recombination nodules in male meiosis, and two nucleolar organiser regions carrier chromosomes. Furthermore, male prophase I cells revealed multivalent chromosome associations and/or unsynapsed or distinctly associated chromosome regions (gaps, less-condensed chromatin, or loop-like structure) that were continuous with synapsed chromosome segments. All these data permitted us to suggest that the chromosomal rearrangements of T. bahiensis occurred in a heterozygous state. A combination of various factors, such as correct disjunction and balanced segregation of the chromosomes involved in complex meiotic pairing, system of achiasmate meiosis, holocentric nature of the chromosomes, population structure, and species dispersion patterns, could have contributed to the high level of chromosome rearrangements present in T. bahiensis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chromosome number and meiotic cycle of triatomines were investigated. All five species presented the same diploid chromosome number, 2n = 22 (20A + XY in the male). Phylogenetic relationships based on chromosomal evidence and C-banded karyotypes in the subfamily are discussed. It is suggested that differences in DNA content are mainly due to variations in the amount of C-heterochromatin, which may be interpreted as loss and/or gain of C-regions. This interpretation is supported by the presence of meiotic and mitotic chromocentres which facilitate the transfer of C-positive material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, spermatogenesis was analyzed in 3 species of the genus Triatoma (T. platensis, T. proctata, T. tibiamaculata). Lacto-acetic orcein staining was used in order to investigate chromosomal meiotic behavior of these species. It allowed the identification of the T. tibiamaculata karyotype (20, X 1X 2Y), the observation that in T. protacta doesn't occur late migration of sexual chromosomes and corroborated knowledgments about holocentric chromosome nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromatin organization in the holocentric chromosomes of three triatomines species was cytologically studied by fluorescent in situ hybridization with a 45S rDNA probe of Drosophila melanogaster to localize ribosomal genes. In Triatoma tibiamaculata, metaphases I showed telomeric highlights in a single, larger bivalent. In T. protacta, hybridization was detected in one of the telomeres of an autosomal chromosome. In T. platensis, there were highlights in a single, smaller chromosome (X chromosome). The results obtained did not agree with the expected localization of rDNA genes in the sex chromosomes of triatomines, as demonstrated by silver impregnation, and suggest that the chromosome reorganization that occurred in this group during evolution may be a more important mechanism involved in rDNA distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative study of holocentric chromosomes in the triatomine species Panstrongylus megistus, Rhodnius pallescens and Triatoma infestans was carried out in order to characterize heterochromatin, rDNA active sites and nucleolar proteins. Cytological preparations of seminiferous tubules were stained by silver impregnation, C banding, fluorochromes CMA 3/DA and DAPI/DA, and fluorescent in situ hybridization (FISH) with Drosophila melanogaster 28S rDNA probe. Our results showed interesting aspects of the organization of chromatin and chromosomes in the meiotic cells of these insects. In R. pallescens, sex chromosomes (X, Y) were distinct from autosomes, when submitted to silver impregnation, C banding, CMA 3 staining, and FISH, confirming that these chromosomes bear nucleolar organizer regions (NORs). In P. megistus, two of the three sex chromosomes were CMA 3/DAPI-; at early meiotic prophase and at diakinesis, silver impregnation corresponded with FISH signals, indicating that in this species, two chromosomes (probably a sex chromosome and an autosome) bear NORs. In T. infestans, silver nitrate and FISH also stained corresponding areas on meiotic chromosomes. Our data suggest that in triatomines, in general, the number and location of NORs are species-specific. These regions may be considered important chromosome markers for comparative studies to improve the understanding of evolutionary mechanisms in these hematophagous insects. ©FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most eukaryotes, the kinetochore protein complex assembles at a single locus termed the centromere to attach chromosomes to spindle microtubules. Holocentric chromosomes have the unusual property of attaching to spindle microtubules along their entire length. Our mechanistic understanding of holocentric chromosome function is derived largely from studies in the nematode Caenorhabditis elegans, but holocentric chromosomes are found over a broad range of animal and plant species. In this review, we describe how holocentricity may be identified through cytological and molecular methods. By surveying the diversity of organisms with holocentric chromosomes, we estimate that the trait has arisen at least 13 independent times (four times in plants and at least nine times in animals). Holocentric chromosomes have inherent problems in meiosis because bivalents can attach to spindles in a random fashion. Interestingly, there are several solutions that have evolved to allow accurate meiotic segregation of holocentric chromosomes. Lastly, we describe how extensive genome sequencing and experiments in nonmodel organisms may allow holocentric chromosomes to shed light on general principles of chromosome segregation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the karyotype, spermatogenesis and nucleolar activity at spermatogenesis in five species of Heteropera: Hyalymenus sp and Neomegalotomus pallescens, Alydidae; Catorhintha guttula and Hypselonotus fulvus, Coreidae; and Niesthrea sidae, Rhopalidae. They showed a red (Alydidae) or orange (Coreidae and Rhopalidae) membrane covering the testes, which consisted of seven testicular lobes, except in N. pallescens, which had only five. All the species had m-chromosomes, an X0 sex chromosome system and 10 (Hyalymenus sp, N. pallescens, and N. sidae), 16 (H. fulvus) or 22 (C. guttula) autosomes. Similar to the other species described to date, all these species showed holocentric chromosomes, interstitial chiasmata in most autosomes, and autosomes dividing reductionally in the first meiotic division and equationally in the second, while sex chromosomes, divided equationally and reductionally in the first and second meiotic divisions, respectively. In addition, we observed that the sex chromosome is heteropycnotic at prophase and that heteropycnotic chromosomal material is found in the nuclei at spermatogenesis; variation in size, shape and location of the nucleolar material occurs during spermatogenesis, denoting a variable degree of activity in the different stages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spermatogenesis was analysed by C-banding in two species of triatomines, Panstrongylus megistus and Fl herreri. Both species revealed interstitial and terminal bands in the autosomes, which is a common pattern in Heteroptera. The terminal bands corroborated the hypothesis that in holocentric chromosomes the heterochromatin is preferentially located at the telomere. The sex chromosomes in FI herreri were totally heterochromatic in spermatogenesis, and in P. megistus the X chromosomes alternated between positive and negative banding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aspects of spermatogenesis and nucleolar behavior were analyzed in Brachymetra albinerva, Cylindrostethus palmaris, Halobatopsis platensis, Limnogonus aduncus (Gerridae), Martarega sp (Notonectidae), Rhagovelia whitei, and Rhagovelia sp (Veliidae). The testicles are rounded (Veliidae), elongated (Gerridae) or spiral (Notonectidae) and have a transparent membrane covering them. The complement chromosome was 2n = 23 (22A + X0, L. aduncus and Rhagovelia sp), 25 (24A + X0, B. albinerva and H. platensis), 26 (22A + 2m + XY, Martarega sp), 29 (28A + X0, C. palmaris), or 39 (38A + X0, R. whitei) chromosomes, and the only species with a different sex chromosome system was Martarega sp, which showed an XY system and m-chromosomes. The meiotic behavior of all species was similar: holocentric chromosomes and heteropyknotic material at prophase, interstitial and/or terminal chiasmata, and first reductional division for the autosomes and the reverse for the sex chromosomes. The only difference observed was related to the very large size of Martarega sp cells in all stages of spermatogenesis. With regard to nucleolar behavior, the species did not show differences, except for Martarega sp with larger nucleoli than the other species. The only species in which it was clearly possible to identify the nucleolar organizer region was L. aduncus, in the region of a terminal autosome. It was also confirmed that the telomeric associations do not occur at random. In the other species, specific staining was very discrete, and the nucleolar organizer region location was not at all evident.